
MODERN OPTICS

(21PHC108)

Semester 2 2022 In-Person Exam paper

This examination is to take place in-person at a central University venue under exam

conditions. The standard length of time for this paper is 2 hours.

You will not be able to leave the exam hall for the �rst 30 or �nal 15 minutes of your exam.

Your invigilator will collect your exam paper when you have �nished.

Help during the exam

Invigilators are not able to answer queries about the content of your exam paper. Instead,

please make a note of your query in your answer script to be considered during the marking

process.

If you feel unwell, please raise your hand so that an invigilator can assist you.

You may use a calculator for this exam. It must comply with the University's Calculator

Policy for In-Person exams, in particular that it must not be able to transmit or receive

information (e.g. mobile devices and smart watches are not allowed).

Answer QUESTION 1 and TWO others.

A formula sheet is provided on pages 4-7.
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1. You may answer as many parts of Question 1 as you wish. All work you do will be assessed

and the marks totalled but note that the maximum total credit for this question will be 20

marks.

(a) For aluminium at λ = 500 nm the real and imaginary parts of the index of refraction

n = 1.5 and κ = 3.2. Find the re
ectance at normal incidence. [5]

(b) A He-Ne laser has been designed to operate between two Brewster windows, in ad-

dition to the optical resonator. Explain the resulting polarisation of the laser light.

[5]

(c) Discuss the interaction length for second harmonic interaction for cases with and

without velocity matching. [5]

(d) Explain the existence of radiation pressure in terms of the quantum description of

light. Derive the relation between light pressure and light intensity. [5]

(e) Discuss the working principle of a beam splitter cube. [5]

(f) A Fresnel zone plate was made from a polarising synthetic sheet (polaroid �lm), in

such way that the light is polarised vertically in all even zones and horizontally in all

odd zones. Explain the principle of operation for such zone plate. [5]

2. (a) Use the rays illustrated in the diagram to help determine the ABCD transmission

matrix for the biconvex lens with the focal length, f , in the paraxial regime. [8]

f f 

a 

b 

L1

(b) Derive the Cauchy's equation n(λ0) = A+D/λ2
0, where A and D are constants, from

the general formula for dispersion in isotropic dielectrics. [6]

(c) A �lter is used to obtain approximately monochromatic light from a white source. If

the pass band of the �lter is 10 nm, what is the coherence length and coherence time

of the �ltered light? The mean wavelength is 600 nm. [6]
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3. (a) What is the minimal resolving power a di�raction grating should have in order to

resolve Raman lines of CsCl4 excited with 435.83 nm wavelength, if the molecule's

vibration frequencies correspond to wavenumbers of 217 cm−1 and 315 cm−1? [9]

(b) Obtain the relationship between the phase velocity, v, and the group velocity, vg, if

the corresponding dispersion is v = a/λ, where a is a constant. [5]

(c) Consider a 1D photonic crystal made from alternating dielectric layers of thicknesses

d1 = 100 nm and d2 = 175 nm and with refraction indices n1 = 1.5 and n2 =

2, respectively. Calculate the central frequencies of the �rst and second photonic

bandgaps. [6]

4. (a) A laser that emits a di�raction-limited beam (λ0 = 632.84 nm), produces a light spot

on the surface of the Mooon a distance of 376, 000 km away. How big is the circular

aperture of the laser, if the light spot has a radius of 58 km? Neglect any e�ects of

the Earth's atmosphere. [8]

(b) Consider a ruby crystal with two energy levels separated by an energy di�erence

corresponding to a free-space wavelength λ0 = 694.3 nm, with a Lorentzian lineshape

of width ∆ν = 330 GHz. The spontaneous lifetime is tsp = 3 ms and the refractive

index of ruby is n = 1.76. What value should the population di�erence N2 − N1

assume to achieve a gain coe�cient γ(ν0) = 0.5 cm−1 at the central frequency? [8]

(c) How long should the crystal be to provide an overall gain of 10 at the central frequency

when γ(ν0) = 0.5 cm−1? [4]
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Formula Sheet

n1

s
+

n2

s′
=

n2 − n1

r
Spherical surface

1

s
+

1

s′
=

1

f
Gaussian lens equation

1

s
+

1

s′
=

2

r
Spherical mirror

0 < d < 4f Stability criterion for an optical resonator

from two concave mirrors

T =

(
1 0

−1/f 1

)
Ray tracing for a thin lens

1

fN
=

1

f1
+

1

f2
+ ..+

1

fN
System of thin lenses

c = 1/
√
ϵ0µ0 ≈ 3× 108 m/s velocity of light in vacuum

h = 6.62× 10−34 J·s Planck constant

ϵ0 = 8.85× 10−12 F/m=A·s/(V·m) permittivity of free space

µ0 = 4π × 10−7 H/m=V·s/(A·m) permeability of free space

A=kg·m2·s−3·V−1 =W·V−1 conversion between Ampere and Volt

v = νλ, k = 2π/λ, N = 1/λ conversion of speed, wavelength, frequency,

angular wavenumber and wavenumber

v = ω/k = 1/
√
ϵµ = c/n phase velocity of EM wave

vg = dω/dk group velocity

vg = v − λ
dv

dλ
group velocity

1

vg
=

1

v
− λ0

c

dn

dλ0

, λ0 = λ · n group velocity

∇⃗ · D⃗ = ρ, ∇⃗ × E⃗ = −∂B⃗

∂t
Maxwell's equations

∇⃗ · B⃗ = 0, ∇⃗ × H⃗ =
∂D⃗

∂t
+ J⃗ Maxwell's equations

D⃗ = ϵ0E⃗ + P⃗ = ϵE⃗ relation between D⃗, E⃗ and P⃗

P⃗ = χϵ0E⃗ relation between P⃗ and E⃗

B⃗ = µ0(H⃗ + M⃗) = µH⃗ relation between B⃗, H⃗ and M⃗

M⃗ = χmH⃗ relation between M⃗ and H⃗
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ωµH⃗ = k⃗ × E⃗ H⃗ and E⃗ of an EM wave

−ωϵE⃗ = k⃗ × H⃗ H⃗ and E⃗ of an EM wave

S⃗ = E⃗ × H⃗ Poynting vector

I = ⟨S⟩ = vϵE2
0/2 Irradiance

P = I/v Light pressure

p⃗ = h̄k⃗ Photon momentum

ni sin θi = nt sin θt Snell's law

E⃗(r⃗, t) = E⃗0 cos(k⃗ · r⃗ − ωt+ ϕ) Description of E-�eld

αmax =
√

n2
1 − n2

2 Fibre optics acceptance angle

I(θ) = I(0) cos2 θ Intensity after a polariser

Amplitude re
ection and transmission coe�cients

r⊥ =
ni cos θi − nt cos θt
ni cos θi + nt cos θt

= −sin(θi − θt)

sin(θi + θt)

t⊥ =
2ni cos θi

ni cos θi + nt cos θt
=

2 sin θt cos θi
sin(θi + θt)

r∥ =
ni cos θt − nt cos θi
nt cos θi + ni cos θt

= −tan(θi − θt)

tan(θi + θt)

t∥ =
2ni cos θi

ni cos θt + nt cos θi
=

2 sin θt cos θi
sin(θi + θt) cos(θi − θt)

tan θB = nt/ni Brewster's angle

R = r2, T =

(
nt cos θt
ni cos θi

)
t2 Re
ectance and transmittance

N 2 = 1− ω2
p/(ω

2 + iω/τ), ωp =
√
Nq2e/(meϵ0) Dispersion for a metal

N 2 = 1 + (Nq2e/meϵ0)
∑
j

fj/(ω
2
0j − ω2 − iγjω) Dispersion for a dielectric

N = n+ iκ Complex refractive index

R =

(
N − 1

N + 1

)(
N ∗ − 1

N ∗ + 1

)
, N = n+ iκ Normal re
ectance from a metal

ne =
√
1 + χ33 Extraordinary index of refraction

no =
√

1 + χ11 Ordinary index of refraction

θ = πl(nR − nL)/λ = πlχ12/(noλ) Rotatory power

of an optically active medium

Λ =
∑
i

lini Optical path length

∆ϕ = k0∆Λ =
2π

λ0

∆Λ Relative phase di�erence
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I = I1 + I2 + 2
√

I1I2 cos∆ϕ Interference of two waves

∆Λ = 2nd cos θ Optical path di�erence

in Michelson interferometer

I = I1 + I2 + 2
√

I1I2Re(γ12(τ)) Interference (partial coherence)

lc =
c

∆ν
= c∆τ Coherence length

∆Λ = 2ntd cos θt Optical path di�erence in thin �lms

I = Imax/(1 + F sin2(k0∆Λ+ δr)/2) Fabry-Perot interferometer

F = 4r2/(1− r2)2 Coe�cient of �nesse

P = ϵ0(χE + χ(2)E2 + χ(3)E3 + ...) Non-linear polarisation expansion

for isotropic media

I(2ω) ∝ [sin(2π(nω − n2ω)l/λ0)]
2 / [2π(nω − n2ω)l/λ0]

2 Intensity of the second harmonic

generated in a crystal slab

M =
1

2n1

(
n1 + n0 n1 − n0

n1 − n0 n1 + n0

)
Transfer matrix

between layers with n0 and n1

M =

(
exp(−iϕ) 0

0 exp(iϕ)

)
, ϕ = n1k0l Transfer matrix

for propagation through n1

cos(KΛ) =
(n1 + n2)

2

4n1n2

cos(π
ω

ωB

)− Dispersion relation

−(n1 − n2)
2

4n1n2

cos(ζπ
ω

ωB

) for 1-dimensional photonic crystal

ωB =
πc

n1d1 + n2d2
Bragg frequency

ζ =
n1d1 − n2d2
n1d1 + n2d2

Up =
ikU0e

−iωt

4π

∫ ∫
Σ

eik(r+r′)

rr′

[
cos(n⃗, r⃗)− cos(n⃗, r⃗′)

]
dA Fresnel-Kirchho� integral formula

1

2

(
1

d′
+

1

d

)
δ2 ≪ λ Condition for Fraunhofer di�raction

I(θ) = I(0)

(
sin β

β

)2

, β =
1

2
kb sin θ Single slit, Fraunhofer di�raction

θ =
1.22λ

D
Angular radius of the Airy disk

I(θ) = I(0)

(
sin β

β

)2

· cos2 γ, γ =
1

2
kh sin θ Double slit, Fraunhofer di�raction

I(θ) = I(0)

(
sin β

β

)2(
sinNγ

N sin γ

)2

Multiple slits, Fraunhofer di�raction

h sin θm = mλ Di�raction grating maxima
λ

∆λ
= Nm Resolving power of a grating

U(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)ei(kxx+kyy)dxdy Fourier optics

21PHC108{PB continued. . .



7 of 7

Up =
U0

1 + i
[C(v) + iS(v)]|v2v1, v1,2 = y1,2

√
k/(πL) Single slit, Fresnel di�raction

C(s) =

∫ s

0

cos
πv2

2
dv Fresnel integrals

S(s) =

∫ s

0

sin
πv2

2
dv

Rm =
√
mλL, 1/L = 1/h+ 1/h′ Fresnel zones

⟨nν⟩ =
1

exp (hν/kBT )− 1
Bose-Einstein distribution

for photons

uν =
8πhν3

c3
1

exp (hν/kBT )− 1
Planck formula

Iν =
2πhν3

c2
1

exp (hν/kBT )− 1
Planck formula

A21/B21 = 8πhν3/c3 Einstein coe�cients

A21 = 1/tsp

σ(ν) = (c/n)2g(ν)/(8πν2
0tsp) E�ective cross-section

for absorption

g(ν) =
∆ν/2π

(ν − ν0)2 + (∆ν/2)2
Lorentzian lineshape

γ(ν) = (N2 −N1)σ(ν) Gain coe�cient

γ(ν) =
1

x
ln (I(x)/I0) Gain coe�cient de�nition

G(ν) = exp(γ(ν)d) Gain

νm = vm/(2d) Longitudinal laser modes

αr = αs +
1

2d
ln

1

R1R2

Total laser loss

(N2 −N1)t = αr/σ(ν) Threshold population di�erence

Trigonometric relations

sin(α + β) = sinα cos β + cosα sin β, cos(α + β) = cosα cos β − sinα sin β

sin(2α) = 2 sinα cosα, cos(2α) = cos2 α− sin2 α

cos2(α/2) = (1 + cosα)/2, sin2(α/2) = (1− cosα)/2

sinα cos β = (1/2) · (sin(α + β) + sin(α− β))

sinα = (eiα − e−iα)/2i, cosα = (eiα + e−iα)/2 e±iα = cosα± i sinα
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