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ROBOTICS PLANNING 
AND CONTROL 

22WSB009 

Semester 2 2023 In-Person Exam paper 

This examination is to take place in-person at a central University venue under exam 
conditions. The standard length of time for this paper is 2 hours. 

You will not be able to leave the exam hall for the first 30 or final 15 minutes of your exam. Your 
invigilator will collect your exam paper when you have finished. 

Help during the exam 

Invigilators are not able to answer queries about the content of your exam paper. Instead, 
please make a note of your query in your answer script to be considered during the marking 

process. 

If you feel unwell, please raise your hand so that an invigilator can assist you. 

You may use a calculator for this exam. It must comply with the University’s Calculator Policy 
for In-Person exams, in particular that it must not be able to transmit or receive information 
(e.g. mobile devices and smart watches are not allowed).  
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ROBOTICS PLANNING AND CONTROL 
(22WSB009) 

Semester 2 2023 2 Hours 

Answer ALL questions. 

Questions carry the marks shown. 

The total marks available for this paper is 60. 

Any University-approved calculator is permitted. 

A range of formulae and tables likely to be of benefit in the solution of these questions are 
provided at the rear of the paper. 

1. The dynamic model for the one degree of freedom robot arm in Figure
Q1-1 can be defined the mass matrix 𝑀𝑀(𝛩𝛩) = [ 𝐼𝐼𝑧𝑧𝑧𝑧𝑐𝑐 + 𝑚𝑚𝑟𝑟𝑐𝑐2], the velocity
terms 𝑉𝑉�𝛩𝛩,  𝛩̇𝛩� = [0], the gravity terms 𝐺𝐺(𝛩𝛩) = [𝑚𝑚𝑟𝑟𝑐𝑐𝑔𝑔 cos 𝜃𝜃], and the
friction terms 𝐹𝐹�𝛩𝛩,  𝛩̇𝛩� = �𝜐𝜐𝜃̇𝜃 + 𝑐𝑐 sgn�𝜃̇𝜃��. Where the mass moment of
inertia 𝐼𝐼𝑧𝑧𝑧𝑧 = 𝑚𝑚

12
(𝑙𝑙2 + 𝑤𝑤2), the mass 𝑚𝑚 = 2𝑘𝑘𝑘𝑘, the arm length 𝑙𝑙 = 1.0𝑚𝑚, the 

width of the arm 𝑤𝑤 = 0.05𝑚𝑚, the centre of mass location 𝑟𝑟𝑐𝑐 = 0.4𝑚𝑚, the 
viscous friction constant 𝜐𝜐 = 0.3𝑁𝑁𝑁𝑁𝑁𝑁/𝑟𝑟𝑟𝑟𝑟𝑟, and the Coulomb friction 
constant 𝑐𝑐 = 3𝑁𝑁𝑁𝑁. Assume that the gravity constant is 𝑔𝑔 = 9.81𝑚𝑚/𝑠𝑠2. 
The robot has unmodeled resonances at 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 = 10.0, 13.0, and 
25.0𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠.  

Figure Q1-1: Schematic diagram of robot arm 
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a) For the above robot (Figure Q1-1), draw a block diagram showing a 
trajectory following partitioned PD controller for the torque 𝜏𝜏 of a 
single join with disturbances 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Assume that both the pose 𝜃𝜃 and 
the velocity 𝜃̇𝜃 of the joint are measured and that the desired 
trajectory is defined in position 𝜃𝜃𝑑𝑑, velocity 𝜃̇𝜃𝑑𝑑, and acceleration 𝜃̈𝜃𝑑𝑑 
terms. Show the specific equations for this robot arm inside the 
blocks of the block diagram.  [5 marks] 

b) Determine the PD control gains, 𝑘𝑘𝑣𝑣 and 𝑘𝑘𝑝𝑝, so that the system is 
always critically damped and as stiff as possible. Assume that the 
natural frequency of the closed-loop dynamics should be no larger 
than half the lowest resonance frequency of the robot arm,  
𝜔𝜔𝑛𝑛 ≤

1
2
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟. [2 marks] 

c) Determine the steady state pose error 𝜃𝜃𝑒𝑒 for partitioned PD control 
law if a constant disturbance of  𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 4𝑁𝑁𝑚𝑚 is acting on the robot 
joint. [4 marks] 

d) Explain different strategies by which the steady-state error in a 
closed-loop control system with disturbance can be reduced or even 
eliminated. Consider their implications for the control behaviour of 
the system. [4 marks] 
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2. You are tasked with designing the software architecture for a planner 3R 
robotic manipulator (see Figure Q2-1) using ROS. The robot is to be used 
in a manufacturing plant to assemble small electronic devices. The robot 
has an end-effector (EE) to pick and place components and a camera 
(Cam1) mounted on its EE. The manufacturing plant has a conveyor belt 
that brings in the components to be assembled, and a camera mounted 
(Cam2) on the ceiling for inspection. 

 

Figure Q2-1: Robot system schematic overview 

a) The company would like to move the robot by teleoperate command. 
Describe the way ROS handles the message communications 
structure which could be used to parse this. Discuss the different 
ways that the nodes can communicate in ROS. [3 marks] 

b) Discuss the types of sensors that could be used to improve the 
perception of the 3R robot and how this would help the visual 
inspection and pick and place tasks. Also discuss how the 
performance of these sensors can be assessed. Describe the 
process by which the robot is aware of its surroundings. [5 marks] 

c) The camera mounted above the conveyor (Cam2) has a focal length 
of 50 mm and an image sensor of size 24 mm x 36 mm. The centre 
point of the component on the conveyer has the coordinates (2, 3, 
4)m with respect to Cam2 coordinate system. Calculate the image 
coordinates of this point on the image sensor. Use a pinhole camera 
model. [2 marks] 

Cam2 

Cam1 

𝜃𝜃1 = 90 

𝜃𝜃2 = 270 
𝜃𝜃3 = 315 

X 

Y 
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d) The robot is tasked with grasping a component located on a conveyor 
in front of it. Cam1 provides a 2D image of the scene, and the pose 
of the component in the image is known. The transformation of the 
camera (Cam1) with respect to the EE (length is given in meters) and 
the transformation of the EE with respect to the Base, are given by 
the following matrices (𝑙𝑙1 = 𝑙𝑙2 = 𝑙𝑙3 = 0.30m): 

𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶1
𝐸𝐸𝐸𝐸 = �

−1 0
  0 0

0 −0.05
1 −0.10

   0 1
0 0

0    0.00
0 1

� 

𝑇𝑇𝐸𝐸𝐸𝐸
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3) −𝑠𝑠𝑖𝑖𝑖𝑖(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)
  𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)

0 𝑥𝑥
0 𝑦𝑦

   0      0
0      0

1 0 
0 1

� 

𝑥𝑥 = 𝑙𝑙1 cos(𝜃𝜃1) + 𝑙𝑙2 cos(𝜃𝜃1 + 𝜃𝜃2) + 𝑙𝑙3cos (𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3) 

𝑦𝑦 = 𝑙𝑙1 sin(𝜃𝜃1) + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2) + 𝑙𝑙3sin (𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3) 

Assuming that the robot arm is in its home position (θ1=90◦, θ2=270◦ 
and θ3=315◦), determine the 3D pose (position and orientation) of the 
component with respect to the robot's base frame, given the known 
2D pose of the component in the image and the intrinsic parameters 
of the camera. 

2D pose of the component in the image: 𝑝𝑝 = �120
150� 

Intrinsic matrix: 𝐴𝐴 = �
1394 0 995

0 1394 600
0 0 1

� 

Assume: λ=1 [10 marks] 
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3. XPTO Technologies ltd provides consultancy services for robotic 
solutions. The company was approach by a customer which provided the 
configuration space seen in Figure Q3-1. 

 

Figure Q3-1: Configuration space. 

a) The customer requested an Exact Cell Decomposition of Figure Q3-1, 
including the generation of the resulting graph. [4 marks] 
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b) The customer provides the sketch of different graph which includes 
weights to the possible paths and an area-based heuristic (h), as seen 
in Figure Q3-2. 

i. Starting from A to reach J, please provide the final tree view of 
applying Dijkstra algorithm and highlight the selected path.  [8 marks] 

ii. Starting from A to reach J, please provide the final tree view of 
applying A* algorithm and highlight the selected path.  [8 marks] 

 

Figure Q3-2: Graph for paths with weights and heuristic. 
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c) The customer started a Rapidly Exploring Random Trees (RRTs) 
algorithm process as seen in Figure Q3-3. Consider the points 1 to 5 
sequentially as the random point in the algorithm. Establish the 
resulting RTTs graph with these points and considering the indicated 
segment max length. [5 marks] 

 

Figure Q3-3: Configuration space with RRT with four branches. 

N Lohse 
M Sotoodeh-Bahraini 

P Ferreira 
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Formula Collection 

General 

Vector Addition 

�
𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
� + �

𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧
� = �

𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥
𝑎𝑎𝑦𝑦 + 𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧 + 𝑏𝑏𝑧𝑧

� 

Vector Subtraction 

�
𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
� − �

𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧
� = �

𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑥𝑥
𝑎𝑎𝑦𝑦 − 𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧 − 𝑏𝑏𝑧𝑧

� 

Vector Dot Product 

�
𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
� ∙ �

𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧
� = 𝑎𝑎𝑥𝑥 × 𝑏𝑏𝑥𝑥 + 𝑎𝑎𝑦𝑦 × 𝑏𝑏𝑦𝑦 + 𝑎𝑎𝑧𝑧 × 𝑏𝑏𝑧𝑧 

Vector Cross Product 

�
𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
� × �

𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧
� = �

𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥

� 

Atan2 Function 

Atan2(𝑦𝑦, 𝑥𝑥) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ tan−1 �

𝑦𝑦
𝑥𝑥
� if 𝑥𝑥 > 0

tan−1 �
𝑦𝑦
𝑥𝑥
� + 𝜋𝜋 if 𝑥𝑥 < 0 and 𝑦𝑦 ≥ 0

tan−1 �
𝑦𝑦
𝑥𝑥
� − 𝜋𝜋 if 𝑥𝑥 < 0 and 𝑦𝑦 < 0

+
𝜋𝜋
2

if 𝑥𝑥 = 0 and 𝑦𝑦 > 0

−
𝜋𝜋
2

if 𝑥𝑥 = 0 and 𝑦𝑦 < 0

undefined if 𝑥𝑥 = 0 and 𝑦𝑦 = 0

 

 

Position and Orientation 

Description of Position 

𝑃𝑃𝐴𝐴 = �
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧
� 



 

 Page 9 of 27 /continued 

 

Description of Orientation 

𝑅𝑅𝐵𝐵𝐴𝐴 = � 𝑋𝑋�𝐵𝐵𝐴𝐴 𝑌𝑌�𝐵𝐵𝐴𝐴 𝑍̂𝑍𝐵𝐵𝐴𝐴 � = �
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

� 

 

Elementary Rotations 

𝑅𝑅𝐵𝐵𝐴𝐴 𝑥𝑥(𝜃𝜃) = �
1 0 0
0 cos 𝜃𝜃 − sin𝜃𝜃
0 sin𝜃𝜃 cos𝜃𝜃

� 

𝑅𝑅𝐵𝐵𝐴𝐴 𝑦𝑦(𝜃𝜃) = �
cos 𝜃𝜃 0 sin𝜃𝜃

0 1 0
− sin𝜃𝜃 0 cos 𝜃𝜃

� 

𝑅𝑅𝐵𝐵𝐴𝐴 𝑧𝑧(𝜃𝜃) = �
cos𝜃𝜃 − sin𝜃𝜃 0
sin 𝜃𝜃 cos𝜃𝜃 0

0 0 1
� 

 

X-Y-Z Fixed Angle Representation 

𝑅𝑅𝑋𝑋𝑋𝑋𝑋𝑋(𝛾𝛾,𝛽𝛽,𝛼𝛼)𝐵𝐵
𝐴𝐴 = �

c𝛼𝛼c𝛽𝛽 c𝛼𝛼s𝛽𝛽s𝛾𝛾 − s𝛼𝛼c𝛾𝛾 c𝛼𝛼s𝛽𝛽c𝛾𝛾 + s𝛼𝛼s𝛾𝛾
s𝛼𝛼c𝛽𝛽 s𝛼𝛼s𝛽𝛽s𝛾𝛾 + c𝛼𝛼c𝛾𝛾 s𝛼𝛼s𝛽𝛽c𝛾𝛾 − c𝛼𝛼s𝛾𝛾
−s𝛽𝛽 c𝛽𝛽s𝛾𝛾 c𝛽𝛽c𝛾𝛾

� 

Inverse: 

𝛽𝛽 = Atan2�−𝑟𝑟31,�𝑟𝑟112 + 𝑟𝑟212 � 

𝛼𝛼 = Atan2 �
𝑟𝑟21

cos𝛽𝛽
,
𝑟𝑟11

cos𝛽𝛽
� 

𝛾𝛾 = Atan2 �
𝑟𝑟32

cos𝛽𝛽
,
𝑟𝑟33

cos𝛽𝛽
� 

 

Z-Y-X Cardano Angle Representation 

𝑅𝑅𝑍𝑍′𝑌𝑌′𝑋𝑋′(𝛼𝛼,𝛽𝛽,  𝛾𝛾)𝐵𝐵
𝐴𝐴 = �

c𝛼𝛼c𝛽𝛽 c𝛼𝛼s𝛽𝛽s𝛾𝛾 − s𝛼𝛼c𝛾𝛾 c𝛼𝛼s𝛽𝛽c𝛾𝛾 + s𝛼𝛼s𝛾𝛾
s𝛼𝛼c𝛽𝛽 s𝛼𝛼s𝛽𝛽s𝛾𝛾 + c𝛼𝛼c𝛾𝛾 s𝛼𝛼s𝛽𝛽c𝛾𝛾 − c𝛼𝛼s𝛾𝛾
−s𝛽𝛽 c𝛽𝛽s𝛾𝛾 c𝛽𝛽c𝛾𝛾

� 
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Z-Y-Z Euler Angle Representation 

𝑅𝑅𝑍𝑍′𝑌𝑌′𝑍𝑍′(𝛼𝛼,𝛽𝛽,  𝛾𝛾)𝐵𝐵
𝐴𝐴 = �

c𝛼𝛼c𝛽𝛽c𝛾𝛾 − s𝛼𝛼s𝛾𝛾 −c𝛼𝛼c𝛽𝛽s𝛾𝛾 − s𝛼𝛼c𝛾𝛾 c𝛼𝛼s𝛽𝛽
s𝛼𝛼c𝛽𝛽c𝛾𝛾 + c𝛼𝛼s𝛾𝛾 −s𝛼𝛼c𝛽𝛽s𝛾𝛾 + c𝛼𝛼c𝛾𝛾 s𝛼𝛼s𝛽𝛽

−s𝛽𝛽c𝛾𝛾 s𝛽𝛽s𝛾𝛾 c𝛽𝛽
� 

Inverse: 

𝛽𝛽 = Atan2��𝑟𝑟312 + 𝑟𝑟322 , 𝑟𝑟33 � 

𝛼𝛼 = Atan2 �
𝑟𝑟23

sin𝛽𝛽
,
𝑟𝑟13

sin𝛽𝛽
� 

𝛾𝛾 = Atan2 �
𝑟𝑟32

sin𝛽𝛽
,−

𝑟𝑟31
sin𝛽𝛽

� 

 

Equivalent Angle-Axis Representation 

𝑅𝑅𝐾𝐾(𝜃𝜃)𝐵𝐵
𝐴𝐴 = �

𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥𝑣𝑣𝑣𝑣 + 𝑐𝑐𝑐𝑐 𝑘𝑘𝑥𝑥𝑘𝑘𝑦𝑦𝑣𝑣𝑣𝑣 − 𝑘𝑘𝑧𝑧𝑠𝑠𝑠𝑠 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧𝑣𝑣𝑣𝑣 + 𝑘𝑘𝑦𝑦𝑠𝑠𝑠𝑠
𝑘𝑘𝑥𝑥𝑘𝑘𝑦𝑦𝑣𝑣𝑣𝑣 + 𝑘𝑘𝑧𝑧𝑠𝑠𝑠𝑠 𝑘𝑘𝑦𝑦𝑘𝑘𝑦𝑦𝑣𝑣𝑣𝑣 + 𝑐𝑐𝑐𝑐 𝑘𝑘𝑦𝑦𝑘𝑘𝑧𝑧𝑣𝑣𝑣𝑣 − 𝑘𝑘𝑥𝑥𝑠𝑠𝑠𝑠
𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧𝑣𝑣𝑣𝑣 − 𝑘𝑘𝑦𝑦𝑠𝑠𝑠𝑠 𝑘𝑘𝑦𝑦𝑘𝑘𝑧𝑧𝑣𝑣𝑣𝑣 + 𝑘𝑘𝑥𝑥𝑠𝑠𝑠𝑠 𝑘𝑘𝑧𝑧𝑘𝑘𝑧𝑧𝑣𝑣𝑣𝑣 + 𝑐𝑐𝑐𝑐

� 

• Where 𝑐𝑐𝑐𝑐 = cos 𝜃𝜃, 𝑠𝑠𝑠𝑠 = sin𝜃𝜃, 𝑣𝑣𝑣𝑣 = 1 − cos 𝜃𝜃, and 𝐾𝐾�𝐴𝐴 = [𝑘𝑘𝑥𝑥 𝑘𝑘𝑦𝑦 𝑘𝑘𝑧𝑧]𝑇𝑇 

Inverse: 

cos 𝜃𝜃 =
𝑟𝑟11 + 𝑟𝑟22 + 𝑟𝑟33 − 1

2
 

𝐾𝐾�𝐴𝐴 =
1

2 sin 𝜃𝜃
�
𝑟𝑟32 − 𝑟𝑟23
𝑟𝑟13 − 𝑟𝑟31
𝑟𝑟21 − 𝑟𝑟12

� 

 

Euler Parameters (Unit Quaternions) Representation 𝓠𝓠 = (𝜼𝜼, 𝝐𝝐) 

𝑅𝑅(𝜂𝜂, 𝜖𝜖)𝐴𝐴
𝐵𝐵 = �

1 − 2𝜖𝜖𝑦𝑦2 − 2𝜖𝜖𝑧𝑧2 2�𝜖𝜖𝑥𝑥𝜖𝜖𝑦𝑦 − 𝜖𝜖𝑧𝑧𝜂𝜂� 2�𝜖𝜖𝑥𝑥𝜖𝜖𝑧𝑧 + 𝜖𝜖𝑦𝑦𝜂𝜂�
2�𝜖𝜖𝑥𝑥𝜖𝜖𝑦𝑦 + 𝜖𝜖𝑧𝑧𝜂𝜂� 1 − 2𝜖𝜖𝑥𝑥2 − 2𝜖𝜖𝑧𝑧2 2�𝜖𝜖𝑦𝑦𝜖𝜖𝑧𝑧 − 𝜖𝜖𝑥𝑥𝜂𝜂�
2�𝜖𝜖𝑥𝑥𝜖𝜖𝑧𝑧 − 𝜖𝜖𝑦𝑦𝜂𝜂� 2�𝜖𝜖𝑦𝑦𝜖𝜖𝑧𝑧 + 𝜖𝜖𝑥𝑥𝜂𝜂� 1 − 2𝜖𝜖𝑥𝑥2 − 2𝜖𝜖𝑦𝑦2

� 

• Where 𝜖𝜖 = [𝜖𝜖𝑥𝑥 𝜖𝜖𝑦𝑦 𝜖𝜖𝑧𝑧]𝑇𝑇, 𝐾𝐾� = [𝑘𝑘𝑥𝑥 𝑘𝑘𝑦𝑦 𝑘𝑘𝑧𝑧]𝑇𝑇, 𝜖𝜖 = 𝐾𝐾� sin 𝜃𝜃
2
, and 𝜂𝜂 = cos 𝜃𝜃

2
 

• Subject to: 𝜂𝜂2 + 𝜖𝜖𝑥𝑥2 + 𝜖𝜖𝑦𝑦2 + 𝜖𝜖𝑧𝑧2 = 1 
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Inverse: 

𝜂𝜂 =
1
2�

1 + 𝑟𝑟11 + 𝑟𝑟22 + 𝑟𝑟33 

𝜖𝜖𝑥𝑥 =
𝑟𝑟32 − 𝑟𝑟23

4𝜂𝜂
 

𝜖𝜖𝑦𝑦 =
𝑟𝑟13 − 𝑟𝑟31

4𝜂𝜂
 

𝜖𝜖𝑧𝑧 =
𝑟𝑟21 − 𝑟𝑟12

4𝜂𝜂
 

 

Manipulator Kinematics 

DH Transformation 

𝑇𝑇𝑖𝑖𝑖𝑖−1 = 𝑅𝑅𝑋𝑋(𝛼𝛼𝑖𝑖−1)𝐷𝐷𝑋𝑋(𝑎𝑎𝑖𝑖−1)𝑅𝑅𝑍𝑍(𝜃𝜃𝑖𝑖)𝐷𝐷𝑍𝑍(𝑑𝑑𝑖𝑖) 

𝑇𝑇𝑖𝑖𝑖𝑖−1 = �

𝑐𝑐𝜃𝜃𝑖𝑖 −𝑠𝑠𝜃𝜃𝑖𝑖 0 𝑎𝑎𝑖𝑖−1
𝑠𝑠𝜃𝜃𝑖𝑖𝑐𝑐𝛼𝛼𝑖𝑖−1 𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝛼𝛼𝑖𝑖−1 −𝑠𝑠𝛼𝛼𝑖𝑖−1 −𝑠𝑠𝛼𝛼𝑖𝑖−1𝑑𝑑𝑖𝑖
𝑠𝑠𝜃𝜃𝑖𝑖𝑠𝑠𝛼𝛼𝑖𝑖−1 𝑐𝑐𝜃𝜃𝑖𝑖𝑠𝑠𝛼𝛼𝑖𝑖−1 𝑐𝑐𝛼𝛼𝑖𝑖−1 𝑐𝑐𝛼𝛼𝑖𝑖−1𝑑𝑑𝑖𝑖

0 0 0 1

� 

• Where: 
- 𝑎𝑎𝑖𝑖: is the distance from 𝑍̂𝑍𝑖𝑖 to 𝑍̂𝑍𝑖𝑖+1 measured along 𝑋𝑋�𝑖𝑖 
- 𝛼𝛼𝑖𝑖: is the angle from 𝑍̂𝑍𝑖𝑖 to 𝑍̂𝑍𝑖𝑖+1 measured about 𝑋𝑋�𝑖𝑖 
- 𝑑𝑑𝑖𝑖: is the distance from 𝑋𝑋�𝑖𝑖−1 to 𝑋𝑋�𝑖𝑖 measured along 𝑍̂𝑍𝑖𝑖 
- 𝜃𝜃𝑖𝑖: is the angle from 𝑋𝑋�𝑖𝑖−1 to 𝑋𝑋�𝑖𝑖 measured about 𝑍̂𝑍𝑖𝑖 

Manipulator Instantaneous Velocities 

Angular Velocity 

Revolute Joints 

𝜔𝜔𝑖𝑖+1
𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 𝜔𝜔𝑖𝑖

𝑖𝑖 + 𝜃̇𝜃𝑖𝑖+1 𝑍̂𝑍𝑖𝑖+1𝑖𝑖+1  

Prismatic Joints 

𝜔𝜔𝑖𝑖+1
𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 𝜔𝜔𝑖𝑖

𝑖𝑖  
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Linear Velocity 

Revolute Joints 

𝜐𝜐𝑖𝑖+1𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 � 𝜐𝜐𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖
𝑖𝑖 × 𝑃𝑃𝑖𝑖+1𝑖𝑖 � 

Prismatic Joints 

𝜐𝜐𝑖𝑖+1𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 � 𝜐𝜐𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖
𝑖𝑖 × 𝑃𝑃𝑖𝑖+1𝑖𝑖 � + 𝑑̇𝑑𝑖𝑖+1 𝑍̂𝑍𝑖𝑖+1𝑖𝑖+1  

 

Jacobians in the Velocity Domain 

𝜈𝜈0 = 𝐽𝐽0 (𝛩𝛩)𝛩̇𝛩 

Changing a Jacobian’s Frame of Reference 

𝐽𝐽(𝛩𝛩)𝐴𝐴 = � 𝑅𝑅𝐵𝐵
𝐴𝐴 0
0 𝑅𝑅𝐵𝐵𝐴𝐴

� 𝐽𝐽(𝛩𝛩)𝐵𝐵  

 

Cartesian Transformation of Velocities 

𝜈𝜈𝐴𝐴𝐴𝐴 = 𝑇𝑇𝜐𝜐𝐵𝐵
𝐴𝐴 𝜈𝜈𝐵𝐵𝐵𝐵  

�
𝜐𝜐𝐴𝐴𝐴𝐴

𝜔𝜔𝐴𝐴𝐴𝐴 � = �
𝑅𝑅𝐵𝐵𝐴𝐴 𝑃𝑃𝐵𝐵.𝑜𝑜𝑜𝑜𝑜𝑜

𝐴𝐴 × 𝑅𝑅𝐵𝐵𝐴𝐴

0 𝑅𝑅𝐵𝐵𝐴𝐴
� �

𝜐𝜐𝐵𝐵𝐵𝐵

𝜔𝜔𝐵𝐵
𝐵𝐵 � 

Static Forces in Manipulators 

Static Forces Balance in Link 𝑖𝑖 

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖+1
𝑖𝑖 𝑓𝑓𝑖𝑖+1𝑖𝑖+1  

Static Moments Balance in Link 𝑖𝑖 

𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖+1
𝑖𝑖 𝑛𝑛𝑖𝑖+1𝑖𝑖+1 + 𝑃𝑃𝑖𝑖+1𝑖𝑖 × 𝑓𝑓𝑖𝑖𝑖𝑖  

 

Static Joint Torques 

Revolute Joints 

𝜏𝜏𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑇𝑇
𝑖𝑖 𝑍̂𝑍𝑖𝑖𝑖𝑖  

Prismatic Joints 

𝜏𝜏𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑇𝑇
𝑖𝑖 𝑍̂𝑍𝑖𝑖𝑖𝑖  
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Jacobians in the Force Domain 

𝜏𝜏 = 𝐽𝐽𝑇𝑇0 ℱ0  

Cartesian Transformation of Static Forces 

ℱ𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑓𝑓𝐵𝐵
𝐴𝐴 ℱ𝐵𝐵𝐵𝐵  

�
𝐹𝐹𝐴𝐴𝐴𝐴

𝑁𝑁𝐴𝐴𝐴𝐴 � = �
𝑅𝑅𝐵𝐵𝐴𝐴 0

𝑃𝑃𝐵𝐵.𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴 × 𝑅𝑅𝐵𝐵𝐴𝐴 𝑅𝑅𝐵𝐵𝐴𝐴

� �
𝐹𝐹𝐵𝐵𝐵𝐵

𝑁𝑁𝐵𝐵𝐵𝐵 � 

 

Manipulator Dynamics 

Newton-Euler Dynamic Formulation 

Rotational Velocity 

Revolute Joints 

𝜔𝜔𝑖𝑖+1
𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 𝜔𝜔𝑖𝑖

𝑖𝑖 + 𝜃̇𝜃𝑖𝑖+1 𝑍̂𝑍𝑖𝑖+1𝑖𝑖+1  

Prismatic Joints 

𝜔𝜔𝑖𝑖+1
𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 𝜔𝜔𝑖𝑖

𝑖𝑖  

Angular Acceleration 

Revolute Joints 

𝜔̇𝜔𝑖𝑖+1
𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 𝜔̇𝜔𝑖𝑖

𝑖𝑖 + 𝑅𝑅𝑖𝑖𝑖𝑖+1 𝜔𝜔𝑖𝑖
𝑖𝑖 × 𝜃̇𝜃𝑖𝑖+1 𝑍̂𝑍𝑖𝑖+1𝑖𝑖+1 + 𝜃̈𝜃𝑖𝑖+1 𝑍̂𝑍𝑖𝑖+1𝑖𝑖+1  

Prismatic Joints 

𝜔̇𝜔𝑖𝑖+1
𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 𝜔̇𝜔𝑖𝑖

𝑖𝑖  

Linear Acceleration 

Revolute Joints 

𝜐̇𝜐𝑖𝑖+1𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 � 𝜔̇𝜔𝑖𝑖
𝑖𝑖 × 𝑃𝑃𝑖𝑖+1𝑖𝑖 + 𝜔𝜔𝑖𝑖

𝑖𝑖 × � 𝜔𝜔𝑖𝑖
𝑖𝑖 × 𝑃𝑃𝑖𝑖+1𝑖𝑖 � + 𝜐̇𝜐𝑖𝑖𝑖𝑖 � 

Prismatic Joints 

𝜐̇𝜐𝑖𝑖+1𝑖𝑖+1 = 𝑅𝑅𝑖𝑖𝑖𝑖+1 � 𝜔̇𝜔𝑖𝑖
𝑖𝑖 × 𝑃𝑃𝑖𝑖+1𝑖𝑖 + 𝜔𝜔𝑖𝑖

𝑖𝑖 × � 𝜔𝜔𝑖𝑖
𝑖𝑖 × 𝑃𝑃𝑖𝑖+1𝑖𝑖 � + 𝜐̇𝜐𝑖𝑖𝑖𝑖 � + 2 𝜔𝜔𝑖𝑖+1

𝑖𝑖+1 × 𝑑̇𝑑𝑖𝑖+1 𝑍̂𝑍𝑖𝑖+1𝑖𝑖+1

+ 𝑑̈𝑑𝑖𝑖+1 𝑍̂𝑍𝑖𝑖+1𝑖𝑖+1  
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Linear acceleration of the centre of mass 

𝜐̇𝜐𝐶𝐶𝑖𝑖+1
𝑖𝑖+1 = 𝜔̇𝜔𝑖𝑖+1

𝑖𝑖+1 × 𝑃𝑃𝐶𝐶𝑖𝑖+1
𝑖𝑖+1 + 𝜔𝜔𝑖𝑖+1

𝑖𝑖+1 × � 𝜔𝜔𝑖𝑖+1
𝑖𝑖+1 × 𝑃𝑃𝐶𝐶𝑖𝑖+1

𝑖𝑖+1 � + 𝜐̇𝜐𝑖𝑖+1𝑖𝑖+1  

 

Force action on the centre of mass 

𝐹𝐹𝑖𝑖+1𝑖𝑖+1 = 𝑚𝑚𝑖𝑖+1 𝜐̇𝜐𝐶𝐶𝑖𝑖+1
𝑖𝑖+1  

 

Torque action on the centre of mass 

𝑁𝑁𝑖𝑖+1𝑖𝑖+1 = 𝐼𝐼𝑖𝑖+1
𝐶𝐶𝑖𝑖+1 𝜔̇𝜔𝑖𝑖+1

𝑖𝑖+1 + 𝜔𝜔𝑖𝑖+1
𝑖𝑖+1 × 𝐼𝐼𝑖𝑖+1

𝐶𝐶𝑖𝑖+1 𝜔𝜔𝑖𝑖+1
𝑖𝑖+1  

 

Link force 

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖+1
𝑖𝑖 𝑓𝑓𝑖𝑖+1𝑖𝑖+1 + 𝐹𝐹𝑖𝑖𝑖𝑖  

 

Link torque 

𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑖𝑖+1
𝑖𝑖 𝑛𝑛𝑖𝑖+1𝑖𝑖+1 + 𝑃𝑃𝐶𝐶𝑖𝑖

𝑖𝑖 × 𝐹𝐹𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖+1𝑖𝑖 × 𝑅𝑅𝑖𝑖+1
𝑖𝑖 𝑓𝑓𝑖𝑖+1𝑖𝑖+1  

 

Joint torque 

Revolute Joints 

𝜏𝜏𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑇𝑇
𝑖𝑖 𝑍̂𝑍𝑖𝑖𝑖𝑖  

Prismatic Joints 

𝜏𝜏𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑇𝑇
𝑖𝑖 𝑍̂𝑍𝑖𝑖𝑖𝑖  
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State-Space Equation 

Joint Space 

𝜏𝜏 = 𝑀𝑀(𝛩𝛩)𝛩̈𝛩 + 𝑉𝑉�𝛩𝛩, 𝛩̇𝛩� + 𝐺𝐺(𝛩𝛩) 

• Where: 
- 𝑀𝑀(𝛩𝛩): is the n x n mass matrix of the manipulator 
- 𝑉𝑉�𝛩𝛩, 𝛩̇𝛩�: is an n x 1 vector of centrifugal and Coriolis terms 
- 𝐺𝐺(𝛩𝛩): is an n x 1 vector of gravity terms 

Including Friction 

𝜏𝜏 = 𝑀𝑀(𝛩𝛩)𝛩̈𝛩 + 𝑉𝑉�𝛩𝛩, 𝛩̇𝛩� + 𝐺𝐺(𝛩𝛩) + 𝐹𝐹�𝛩𝛩, 𝛩̇𝛩� 

 

Cartesian Space 

ℱ = 𝑀𝑀𝑥𝑥(𝛩𝛩)𝜒̈𝜒 + 𝑉𝑉𝑥𝑥�𝛩𝛩, 𝛩̇𝛩� + 𝐺𝐺𝑥𝑥(𝛩𝛩) 

• Where: 
- 𝑀𝑀𝑥𝑥 (𝛩𝛩) = 𝐽𝐽−𝑇𝑇(𝛩𝛩)𝑀𝑀(𝛩𝛩)𝐽𝐽−1(𝛩𝛩) 
- 𝑉𝑉𝑥𝑥�𝛩𝛩, 𝛩̇𝛩� = 𝐽𝐽−𝑇𝑇(𝛩𝛩)�𝑉𝑉�𝛩𝛩, 𝛩̇𝛩� − 𝑀𝑀(𝛩𝛩)𝐽𝐽−1(𝛩𝛩)𝐽𝐽(̇𝛩𝛩)𝛩̇𝛩� 
- 𝐺𝐺𝑥𝑥(𝛩𝛩) = 𝐽𝐽−𝑇𝑇(𝛩𝛩)𝐺𝐺(𝛩𝛩) 

 

Configuration-Space Equation 

Joint Space 

𝜏𝜏 = 𝑀𝑀(𝛩𝛩)𝛩̈𝛩 + 𝐵𝐵(𝛩𝛩)�𝛩̇𝛩𝛩̇𝛩� + 𝐶𝐶(𝛩𝛩)�𝛩̇𝛩2� + 𝐺𝐺(𝛩𝛩) 

• Where: 
- 𝐵𝐵(𝛩𝛩): is a matrix of 𝑛𝑛 × 𝑛𝑛(𝑛𝑛 − 1)/2 dimensions of Coriolis coefficients 
- �𝛩̇𝛩𝛩̇𝛩�: is a 𝑛𝑛(𝑛𝑛 − 1)/2 × 1 vector of joint velocity products given by: 

�𝛩̇𝛩𝛩̇𝛩� = [𝜃̇𝜃1𝜃̇𝜃2 𝜃̇𝜃1𝜃̇𝜃3 … 𝜃̇𝜃𝑛𝑛−1𝜃̇𝜃𝑛𝑛]𝑇𝑇 
- 𝐶𝐶(𝛩𝛩): is an 𝑛𝑛 × 𝑛𝑛 matrix of centrifugal coefficients  
- �𝛩̇𝛩2�: is an 𝑛𝑛 × 1 vector given by: 

�𝛩̇𝛩2� = [𝜃̇𝜃12 𝜃̇𝜃22 … 𝜃̇𝜃𝑛𝑛2]𝑇𝑇 
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Cartesian Space 

𝜏𝜏 = 𝐽𝐽𝑇𝑇(𝛩𝛩)𝑀𝑀𝑥𝑥(𝛩𝛩)𝑋̈𝑋 + 𝐵𝐵𝑥𝑥(𝛩𝛩)�𝛩̇𝛩𝛩̇𝛩� + 𝐶𝐶𝑥𝑥(𝛩𝛩)�𝛩̇𝛩2� + 𝐺𝐺(𝛩𝛩) 

• Where: 
- 𝐵𝐵𝑥𝑥(𝛩𝛩): is a matrix of 𝑛𝑛 × 𝑛𝑛(𝑛𝑛 − 1)/2 dimensions of Coriolis coefficients 
- �𝛩̇𝛩𝛩̇𝛩�: is a 𝑛𝑛(𝑛𝑛 − 1)/2 × 1 vector of joint velocity products given by: 

�𝛩̇𝛩𝛩̇𝛩� = [𝜃̇𝜃1𝜃̇𝜃2 𝜃̇𝜃1𝜃̇𝜃3 … 𝜃̇𝜃𝑛𝑛−1𝜃̇𝜃𝑛𝑛]𝑇𝑇 
- 𝐶𝐶𝑥𝑥(𝛩𝛩): is an 𝑛𝑛 × 𝑛𝑛 matrix of centrifugal coefficients  
- �𝛩̇𝛩2�: is an 𝑛𝑛 × 1 vector given by: 

�𝛩̇𝛩2� = [𝜃̇𝜃12 𝜃̇𝜃22 … 𝜃̇𝜃𝑛𝑛2]𝑇𝑇 

Trajectory Generation 

Cubic Polynomial 

𝜃𝜃(𝑡𝑡) = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + 𝑎𝑎3𝑡𝑡3 

𝜃̇𝜃(𝑡𝑡) = 𝑎𝑎1 + 2𝑎𝑎2𝑡𝑡 + 3𝑎𝑎3𝑡𝑡2 

𝜃̈𝜃(𝑡𝑡) = 2𝑎𝑎2 + 6𝑎𝑎3𝑡𝑡 

Coefficients for predefined positions and velocities: 

- 𝑎𝑎0 = 𝜃𝜃0 
- a1 = 𝜃̇𝜃0 
- 𝑎𝑎2 = 3

𝑡𝑡𝑓𝑓
2 �𝜃𝜃𝑓𝑓 − 𝜃𝜃0� −

2
𝑡𝑡𝑓𝑓
𝜃̇𝜃0 −

1
𝑡𝑡𝑓𝑓
𝜃̇𝜃𝑓𝑓 

- 𝑎𝑎3 = − 2
𝑡𝑡𝑓𝑓
3 �𝜃𝜃𝑓𝑓 − 𝜃𝜃0� + 1

𝑡𝑡𝑓𝑓
2 �𝜃̇𝜃𝑓𝑓 + 𝜃̇𝜃0� 
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Quintic Polynomial 

𝜃𝜃(𝑡𝑡) = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + 𝑎𝑎3𝑡𝑡3 + 𝑎𝑎4𝑡𝑡4 + 𝑎𝑎5𝑡𝑡5 

𝜃̇𝜃(𝑡𝑡) = 𝑎𝑎1 + 2𝑎𝑎2𝑡𝑡 + 3𝑎𝑎3𝑡𝑡2 + 4𝑎𝑎4𝑡𝑡3 + 5𝑎𝑎5𝑡𝑡4 

𝜃̈𝜃(𝑡𝑡) = 2𝑎𝑎2 + 6𝑎𝑎3𝑡𝑡 + 12𝑎𝑎4𝑡𝑡2 + 20𝑎𝑎5𝑡𝑡3 

Coefficients for predefined positions, velocities, and accelerations: 

- 𝑎𝑎0 = 𝜃𝜃0 
- 𝑎𝑎1 = 𝜃̇𝜃0 

- 𝑎𝑎2 = 𝜃̈𝜃0
2

 

- 𝑎𝑎3 =
20𝜃𝜃𝑓𝑓−20𝜃𝜃0−�8𝜃̇𝜃𝑓𝑓+12𝜃̇𝜃0�𝑡𝑡𝑓𝑓−�3𝜃̈𝜃0−𝜃̈𝜃𝑓𝑓�𝑡𝑡𝑓𝑓

2

2𝑡𝑡𝑓𝑓
3  

- 𝑎𝑎4 =
30𝜃𝜃0−30𝜃𝜃𝑓𝑓+�14𝜃̇𝜃𝑓𝑓+16𝜃̇𝜃0�𝑡𝑡𝑓𝑓+�3𝜃̈𝜃0−2𝜃̈𝜃𝑓𝑓�𝑡𝑡𝑓𝑓

2

2𝑡𝑡𝑓𝑓
4  

- 𝑎𝑎5 =
12𝜃𝜃𝑓𝑓−12𝜃𝜃0−�6𝜃̇𝜃𝑓𝑓+6𝜃̇𝜃0�𝑡𝑡𝑓𝑓−�𝜃̈𝜃0−𝜃̈𝜃𝑓𝑓�𝑡𝑡𝑓𝑓

2

2𝑡𝑡𝑓𝑓
5  

Linear Function with Parabolic Blends 

𝜃̈𝜃𝑡𝑡𝑏𝑏2 − 𝜃̈𝜃𝑡𝑡𝑡𝑡𝑏𝑏 + �𝜃𝜃𝑓𝑓 − 𝜃𝜃0� = 0 

Where: 

- 𝑡𝑡𝑏𝑏: is the time at the end of the blend region 
- 𝜃𝜃0: is the value of 𝜃𝜃 at 𝑡𝑡 = 0 
- 𝜃𝜃𝑓𝑓: is the value of 𝜃𝜃 at the finish of the trajectory 

Blend time for a chosen acceleration, 𝜃̈𝜃𝑏𝑏: 

- 𝑡𝑡𝑏𝑏 = 𝑡𝑡𝑓𝑓
2
−

�𝜃̈𝜃𝑏𝑏
2𝑡𝑡𝑓𝑓

2−4𝜃̈𝜃𝑏𝑏�𝜃𝜃𝑓𝑓−𝜃𝜃0�

2𝜃̈𝜃𝑏𝑏
 

Subject to: 

- �𝜃̈𝜃𝑏𝑏� ≥
4�𝜃𝜃𝑓𝑓−𝜃𝜃0�

𝑡𝑡𝑓𝑓
2  

Blend time and acceleration for a chosen cruise velocity, 𝜃̇𝜃𝑏𝑏: 

- 𝑡𝑡𝑏𝑏 = 𝜃𝜃0−𝜃𝜃𝑓𝑓+𝜃̇𝜃𝑏𝑏𝑡𝑡𝑓𝑓
𝜃̇𝜃𝑏𝑏

 

- 𝜃̈𝜃𝑏𝑏 = 𝜃̇𝜃𝑏𝑏
2

𝜃𝜃0−𝜃𝜃𝑓𝑓+𝜃̇𝜃𝑏𝑏𝑡𝑡𝑓𝑓
 

Subject to: 

- �𝜃𝜃𝑓𝑓−𝜃𝜃0�
𝑡𝑡𝑓𝑓

< �𝜃̇𝜃𝑏𝑏� ≤
2�𝜃𝜃𝑓𝑓−𝜃𝜃0�

𝑡𝑡𝑓𝑓
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Polynomial functions for position, velocity, and acceleration: 

𝜃𝜃(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ 𝜃𝜃0 +

1
2
𝜃̈𝜃𝑏𝑏𝑡𝑡2 if 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏

𝜃𝜃0 + 𝜃̈𝜃𝑏𝑏𝑡𝑡𝑏𝑏 �𝑡𝑡 −
1
2
𝑡𝑡𝑏𝑏� if 𝑡𝑡𝑏𝑏 < 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑏𝑏

𝜃𝜃𝑓𝑓 −
1
2
𝜃̈𝜃𝑏𝑏�𝑡𝑡𝑓𝑓 − 𝑡𝑡�

2
if 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑏𝑏 < 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓

 

𝜃̇𝜃(𝑡𝑡) = �
𝜃̈𝜃𝑏𝑏𝑡𝑡 if 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏
𝜃̈𝜃𝑏𝑏𝑡𝑡𝑏𝑏 if 𝑡𝑡𝑏𝑏 < 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑏𝑏

𝜃̈𝜃𝑏𝑏�𝑡𝑡𝑓𝑓 − 𝑡𝑡� if 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑏𝑏 < 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓

 

𝜃̈𝜃(𝑡𝑡) = �
𝜃̈𝜃𝑏𝑏 if 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏
0 if 𝑡𝑡𝑏𝑏 < 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑏𝑏
−𝜃̈𝜃𝑏𝑏 if 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑏𝑏 < 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓

 

 

Linear Function with Parabolic Blends – with Via Points 

 

𝜃̇𝜃𝑗𝑗𝑗𝑗 =
𝜃𝜃𝑘𝑘 − 𝜃𝜃𝑗𝑗
𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑

 

𝜃̈𝜃𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆�𝜃̇𝜃𝑘𝑘𝑘𝑘 − 𝜃̇𝜃𝑗𝑗𝑗𝑗��𝜃̈𝜃𝑘𝑘� 

𝑡𝑡𝑘𝑘 =
𝜃̇𝜃𝑘𝑘𝑘𝑘 − 𝜃̇𝜃𝑗𝑗𝑗𝑗

𝜃̈𝜃𝑘𝑘
 

𝑡𝑡𝑗𝑗𝑗𝑗 = 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 −
1
2
𝑡𝑡𝑗𝑗 −

1
2
𝑡𝑡𝑘𝑘 

Where: 

- 𝑡𝑡𝑘𝑘: is the duration of the blend region for path point 𝑘𝑘. 
- 𝑡𝑡𝑗𝑗𝑗𝑗: is the duration of the linear portion between 𝑗𝑗 and 𝑘𝑘. 
- 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑: is the overall duration of the segment connecting 𝑗𝑗 and 𝑘𝑘. 
- 𝜃̇𝜃𝑗𝑗𝑗𝑗: is the velocity of the linear portion between 𝑗𝑗 and 𝑘𝑘. 
- 𝜃̈𝜃𝑗𝑗: is the acceleration during the blend at point 𝑗𝑗. 
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First segment: 

𝜃̇𝜃12 =
𝜃𝜃2 − 𝜃𝜃1

𝑡𝑡𝑑𝑑12 −
1
2 𝑡𝑡1

= 𝜃̈𝜃1𝑡𝑡1 

𝑡𝑡1 = 𝑡𝑡𝑑𝑑12 − �𝑡𝑡𝑑𝑑122 −
2(𝜃𝜃2 − 𝜃𝜃1)

𝜃̈𝜃1
 

Where: 

- 𝜃̈𝜃1 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃2 − 𝜃𝜃1)�𝜃̈𝜃1� 

Last segment: 

𝜃̇𝜃(𝑛𝑛−1)𝑛𝑛 =
𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑛𝑛−1

𝑡𝑡𝑑𝑑(𝑛𝑛−1)𝑛𝑛 −
1
2 𝑡𝑡𝑛𝑛

= 𝜃̈𝜃𝑛𝑛𝑡𝑡𝑛𝑛 

𝑡𝑡𝑛𝑛 = 𝑡𝑡𝑑𝑑(𝑛𝑛−1)𝑛𝑛 − �𝑡𝑡𝑑𝑑(𝑛𝑛−1)𝑛𝑛
2 +

2(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑛𝑛−1)
𝜃̈𝜃𝑛𝑛

 

Where:  

- 𝜃̈𝜃𝑛𝑛 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃𝑛𝑛−1 − 𝜃𝜃𝑛𝑛)�𝜃̈𝜃𝑛𝑛� 

 
Linear Control of Manipulators 

Second-Order Linear System 

𝑥̈𝑥𝑒𝑒 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑥̇𝑥𝑒𝑒 + 𝜔𝜔𝑛𝑛2𝑥𝑥𝑒𝑒 = 0 

Where: 

- 𝑥𝑥𝑒𝑒: is the position error between the desired and actual position 𝑥𝑥𝑒𝑒 = 𝑥𝑥𝑑𝑑 − 𝑥𝑥 
- 𝑥̇𝑥𝑒𝑒: is the velocity error 
- 𝑥̈𝑥𝑒𝑒: is the acceleration error 

- 𝜔𝜔𝑛𝑛 = �𝑘𝑘
𝑚𝑚

: is called the natural frequency. 

- 𝜁𝜁 = 𝑏𝑏
2√𝑘𝑘𝑘𝑘

: is called the damping ratio. 

The roots are: 

- 𝑠𝑠1 = −𝜁𝜁𝜔𝜔𝑛𝑛 + 𝜔𝜔𝑛𝑛�𝜁𝜁2 − 1 
- 𝑠𝑠2 = −𝜁𝜁𝜔𝜔𝑛𝑛 − 𝜔𝜔𝑛𝑛�𝜁𝜁2 − 1 
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Overdamped: 𝜁𝜁 > 1 

- The solution for 𝑥̈𝑥𝑒𝑒 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑥̇𝑥𝑒𝑒 + 𝜔𝜔𝑛𝑛2𝑥𝑥𝑒𝑒 = 0 is: 
𝑥𝑥𝑒𝑒(𝑡𝑡) = 𝑐𝑐1𝑒𝑒𝑠𝑠1𝑡𝑡 + 𝑐𝑐2𝑒𝑒𝑠𝑠2𝑡𝑡 

- The coefficients for standard step error response 𝑥𝑥𝑒𝑒(0) = 1 and 𝑥̇𝑥𝑒𝑒(0) = 0, are: 

𝑐𝑐1 =
1
2

+
𝜁𝜁

2�𝜁𝜁2 − 1
 

𝑐𝑐2 = 1
2
− 𝜁𝜁

2�𝜁𝜁2−1
   

Critically damped: 𝜁𝜁 = 1 

- The solution for𝑥̈𝑥𝑒𝑒 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑥̇𝑥𝑒𝑒 + 𝜔𝜔𝑛𝑛2𝑥𝑥𝑒𝑒 = 0 is: 
𝑥𝑥𝑒𝑒(𝑡𝑡) = (𝑐𝑐1 + 𝑐𝑐2𝑡𝑡)𝑒𝑒−𝜔𝜔𝑛𝑛𝑡𝑡 

- The coefficients for standard step error response 𝑥𝑥𝑒𝑒(0) = 1 and 𝑥̇𝑥𝑒𝑒(0) = 0, are: 
𝑐𝑐1 = 1 
𝑐𝑐2 = 𝜔𝜔𝑛𝑛 

Underdamped: 𝜁𝜁 < 1 

- The solution for 𝑥̈𝑥𝑒𝑒 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑥̇𝑥𝑒𝑒 + 𝜔𝜔𝑛𝑛2𝑥𝑥𝑒𝑒 = 0 is: 
𝑥𝑥𝑒𝑒(𝑡𝑡) = (𝑐𝑐1 cos𝜔𝜔𝑑𝑑𝑡𝑡 + 𝑐𝑐2 sin𝜔𝜔𝑑𝑑𝑡𝑡)𝑒𝑒−𝜁𝜁𝜔𝜔𝑛𝑛𝑡𝑡 

Where:  
• 𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛�1 − 𝜁𝜁2 is the damped natural frequency 

- The coefficients for standard step error response 𝑥𝑥𝑒𝑒(0) = 1 and 𝑥̇𝑥𝑒𝑒(0) = 0, are: 
𝑐𝑐1 = 1 

𝑐𝑐2 =
𝜁𝜁

�1 − 𝜁𝜁2
 

 

Partitioned Control Law 

Servo portion of the control law: 

𝑓𝑓′ = 𝑥̈𝑥𝑑𝑑 + 𝑘𝑘𝜐𝜐𝑥̇𝑥𝑒𝑒 + 𝑘𝑘𝑝𝑝𝑥𝑥𝑒𝑒 

Where: 

- 𝑥̈𝑥𝑑𝑑: is the desired acceleration 
- 𝑘𝑘𝜐𝜐: is the velocity control gain 
- 𝑘𝑘𝑝𝑝: is the position control gain 
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Model-based portion of the control law: 

𝑓𝑓 = 𝛼𝛼𝑓𝑓′ + 𝛽𝛽 

Where: 

- 𝛼𝛼 and 𝛽𝛽 are functions or constants that are chosen such that if 𝑓𝑓′ is taken as 
the new input, the system appears to be a unit mass. 

Error Dynamics for Trajectory-Following:  

𝑥̈𝑥𝑒𝑒 + 𝑘𝑘𝜐𝜐𝑥̇𝑥𝑒𝑒 + 𝑘𝑘𝑝𝑝𝑥𝑥𝑒𝑒 = 0 

Error Dynamics for Trajectory-Following with Disturbance rejection: 

𝑥̈𝑥𝑒𝑒 + 𝑘𝑘𝜐𝜐𝑥̇𝑥𝑒𝑒 + 𝑘𝑘𝑝𝑝𝑥𝑥𝑒𝑒 =
1
𝛼𝛼
𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 

Where: 

- 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑: is a disturbance force 

 

Partitioned Control Law of the Single Joint 

Model of the joint torque: 

𝜏𝜏 = (𝐼𝐼 + 𝜂𝜂2𝐼𝐼𝑚𝑚)𝜃̈𝜃 + (𝑏𝑏 + 𝜂𝜂2𝑏𝑏𝑚𝑚)𝜃̇𝜃 

Where: 

- 𝐼𝐼𝑚𝑚 and 𝐼𝐼 are the inertias of the motor rotor and the load, respectively. 
- 𝑏𝑏𝑚𝑚 and 𝑏𝑏 are viscous friction coefficients for the rotor and load bearings, 

respectively.  

Model-based portion of the control law: 

𝜏𝜏 = 𝛼𝛼𝜏𝜏′ + 𝛽𝛽 

  



 

 Page 22 of 27 /continued 

Servo portion of the control law: 

𝜏𝜏′ = 𝜃̈𝜃𝑑𝑑 + 𝑘𝑘𝜐𝜐𝜃̇𝜃𝑒𝑒 + 𝑘𝑘𝑝𝑝𝜃𝜃𝑒𝑒 

Where the control gains are chosen as: 

- 𝑘𝑘𝑝𝑝 = 𝜔𝜔𝑛𝑛2 = 1
4
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟2  

- 𝑘𝑘𝜐𝜐 = 2�𝑘𝑘𝑝𝑝 = 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 

With: 

- 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟: is the resonance frequency of the system 

 

MIMO Partitioned Control of Manipulator  

The rigid body dynamics of a robotic manipulator take the form: 

𝜏𝜏 = 𝑀𝑀(𝛩𝛩)𝛩̈𝛩 + 𝑉𝑉�𝛩𝛩,  𝛩̇𝛩� + 𝐺𝐺(𝛩𝛩) + 𝐹𝐹�𝛩𝛩,  𝛩̇𝛩� 

Where: 

- 𝜏𝜏: is an 𝑛𝑛 × 1 vector of the joint torques/forces 
- 𝑀𝑀(𝛩𝛩): is the 𝑛𝑛 × 𝑛𝑛 inertia matrix 
- 𝑉𝑉�𝛩𝛩,  𝛩̇𝛩�: is an 𝑛𝑛 × 1 vector of centrifugal and Coriolis terms 
- 𝐺𝐺(𝛩𝛩): is an 𝑛𝑛 × 1 vector of gravity terms 
- 𝐹𝐹�𝛩𝛩,  𝛩̇𝛩�: is an 𝑛𝑛 × 1 vector of friction terms 

The model-based portion of the control law is: 

𝜏𝜏 = 𝛼𝛼𝜏𝜏′ + 𝛽𝛽 

Where: 

- 𝜏𝜏, 𝜏𝜏′, and 𝛽𝛽 are 𝑛𝑛 × 1 vectors 
- 𝛼𝛼 is a 𝑛𝑛 × 𝑛𝑛 matrix 

The servo portion of the control law is: 

𝜏𝜏′ = 𝛩̈𝛩𝑑𝑑 + 𝐾𝐾𝜐𝜐𝛩̇𝛩𝑒𝑒 + 𝐾𝐾𝑝𝑝𝛩𝛩𝑒𝑒 

Where: 

- 𝐾𝐾𝜐𝜐 and 𝐾𝐾𝑝𝑝 are 𝑛𝑛 × 𝑛𝑛 matrices, generally chosen with constant gains on the 
diagonal. 

- 𝛩𝛩𝑒𝑒 and 𝛩̇𝛩𝑒𝑒 are 𝑛𝑛 × 1 vectors of the position and velocity errors, respectively.  
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Perception 

Sensor performance 

Dynamic Range (dB): 10 . log �upper limit
lower limit

� 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1 −
|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|

𝑣𝑣
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝜎𝜎

 

Probability of 𝑋𝑋 falling between two limits a and b: 

𝑝𝑝[𝑎𝑎 < 𝑋𝑋 ≤ 𝑏𝑏] = �𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

 

Mean Value: 𝜇𝜇 = 𝐸𝐸[𝑋𝑋] = ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞  

Variance: 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝜎𝜎2 = ∫ (𝑥𝑥 − 𝜇𝜇)2𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞  

Gaussian function: 𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

 𝑒𝑒𝑒𝑒𝑒𝑒 �− (𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2
� 

Time of Flight (TOF): 𝑑𝑑 = 𝑐𝑐. 𝑡𝑡 

Where: 

- 𝑑𝑑 = distance travelled,  
- 𝑐𝑐 = speed of wave propagation,  
- 𝑡𝑡 = time of flight 

 

Ultrasonic TOF: 𝑑𝑑=(𝑐𝑐.𝑡𝑡)/2  

Where: 

- 𝑑𝑑 = distance calculated,  
- 𝑐𝑐 = speed of sound in air (𝑐𝑐 = �𝛾𝛾𝛾𝛾𝛾𝛾),  
- 𝑡𝑡 = time of flight,  
- 𝛾𝛾 = Ratio of specific heats,  
- 𝑅𝑅 = Gas constant,  
- 𝑇𝑇 = Temperature in degrees Kelvin 

 

Infrared Phase Shift Measurement:  
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𝐷𝐷′ = 𝐿𝐿 + 2𝐷𝐷 = 𝐿𝐿 +  
𝜃𝜃

2𝜋𝜋
𝜆𝜆 

c = 𝑓𝑓. 𝜆𝜆 

𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝜃𝜃

4𝜋𝜋
𝜆𝜆 

Where: 

- c = speed of light,  
- 𝑓𝑓 = modulating frequency,  
- 𝜆𝜆 = the wavelength,  
- θ = the phase difference,  
- 𝐷𝐷′ = Total distance covered by the emitted light,  
- 𝐷𝐷 = Distance between the half-silvered mirror and the mirror,  
- 𝐿𝐿 = Distance between the half-silvered mirror and the detector,  
- 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = The required distance between the beam splitter and the target 

 

Doppler Effect Sensing:  

If the transmitter is moving: 𝑓𝑓𝑟𝑟 = 𝑓𝑓𝑡𝑡
1

1+𝑣𝑣/𝑐𝑐
 

If the receiver is moving: 𝑓𝑓𝑟𝑟 = 𝑓𝑓𝑡𝑡 (1 + 𝑣𝑣/𝑐𝑐) 

Where:  

- 𝑣𝑣 = the relative speed between the transmitter and receiver,  
- 𝑓𝑓𝑟𝑟 = frequency of receiver electromagnetic wave,  
- 𝑓𝑓𝑡𝑡 = frequency of transmitter electromagnetic wave 

 

Camera pinhole 

Basic Lens model: 1
𝑓𝑓

= 1
𝑧𝑧

+ 1
𝑒𝑒
 

Where: 

- 𝑧𝑧 = distance to the object,  
- 𝑒𝑒 = distance behind the lens at which the focused image is formed,  
- 𝑓𝑓 = focal length 

Blur circle: 𝑅𝑅 = 𝐿𝐿𝐿𝐿
2𝑒𝑒

 

Where: 
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- 𝑅𝑅 = Radius of Circle,  
- 𝐿𝐿 = the diameter of the Lens,  
- 𝛿𝛿 = the displacement of the image plane 

Simple Perspective Projection: 𝑓𝑓
𝑧𝑧

= 𝑢𝑢
𝑥𝑥

= 𝑣𝑣
𝑦𝑦
 

Where: 

- PW(x, y, z) = position of the point in the world frame and  
- p(u, v) = position of the point in the image frame 
- 𝑓𝑓 = focal length 

 

 

General camera model 

𝑢𝑢 = 𝑘𝑘𝑢𝑢
𝑓𝑓
𝑧𝑧

. 𝑥𝑥 + 𝑐𝑐𝑥𝑥 

𝑣𝑣 = 𝑘𝑘𝑣𝑣
𝑓𝑓
𝑧𝑧

.𝑦𝑦 + 𝑐𝑐𝑦𝑦 

Where: 

- (cx,cy) are the coordinates of the principle point,  

- ku(kv) is the inverse of the effective pixel size along u (v) direction 
and is measured in pixel.m^-1. 

 

𝑝𝑝 = �
𝑢𝑢
𝑣𝑣
1
� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑤𝑤 = �

𝑋𝑋𝑐𝑐
𝑌𝑌𝑐𝑐
𝑍𝑍𝑐𝑐
1

� 

Where:  

- PW(x, y, z) = position of the point in the world frame and  

- p(u, v) = position of the point in the image frame 

 

Camera model: 

𝜆𝜆𝜆𝜆 = 𝐴𝐴[𝑅𝑅|𝑡𝑡]𝑃𝑃𝑤𝑤 
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intrinsic matrix: 𝐴𝐴 = �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� 

camera extrinsic parameters: 𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑘𝑘𝑢𝑢 and 𝑓𝑓𝑦𝑦 = 𝑓𝑓𝑘𝑘𝑣𝑣  which describe 
the focal lengths expressed in horizontal and vertical pixels 
respectively 

The Rotational and Translational parameters R and t, respectively.  

 

Line fitting 

Probabilistic line fitting: pi cos(𝜃𝜃i − 𝛼𝛼) − 𝑟𝑟 = 𝑑𝑑i 

ith Point in polar coordinates: xi(pi,θi) 

Where: 

- 𝑑𝑑i : the orthogonal distance between (pi,θi) and the line 

- r and α: Model parameters in polar coordinates  

 

Individual weight for Probabilistic line fitting: wi = 1/𝜎𝜎𝑖𝑖2 

Where: 

-  𝜎𝜎2 is Variance  

 

Cost function: S=∑ wi𝑑𝑑i
2 = ∑ wi(pi cos(𝜃𝜃i − 𝛼𝛼) − 𝑟𝑟)2𝑖𝑖𝑖𝑖  

 

The weighted least-squares solution: 

𝛼𝛼=
1
2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�

∑ wipi2𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑖𝑖 −
2

∑ wi𝑖𝑖
∑∑wiwj𝑝𝑝i𝑝𝑝jcos𝜃𝜃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗

∑ wipi2𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑖𝑖 −
1

∑ wi𝑖𝑖
∑∑wiwj𝑝𝑝i𝑝𝑝jcos(𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑗𝑗)

� 

 

r=
∑ wipi cos(𝜃𝜃i − 𝛼𝛼)𝑖𝑖

∑ wi𝑖𝑖
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Error Propagation 

Covariance matrix: 𝐶𝐶𝑌𝑌 = 𝐹𝐹𝑋𝑋𝐶𝐶𝑋𝑋𝐹𝐹𝑋𝑋𝑇𝑇 

Where: 

- 𝐶𝐶𝑋𝑋 = covariance matrix representing the input uncertainties 

- 𝐶𝐶𝑌𝑌 = covariance matrix representing the propagated uncertainties 
for the outputs 

- 𝐹𝐹𝑋𝑋 is the Jacobian matrix defined as: 𝐹𝐹𝑋𝑋 = 𝛻𝛻𝛻𝛻 =

⎣
⎢
⎢
⎡
𝑑𝑑𝑓𝑓1
𝑑𝑑𝑋𝑋1

⋯ 𝑑𝑑𝑓𝑓1
𝑑𝑑𝑋𝑋𝑛𝑛

⋮ ⋱ ⋮
𝑑𝑑𝑓𝑓𝑚𝑚
𝑑𝑑𝑋𝑋1

⋯ 𝑑𝑑𝑑𝑑𝑚𝑚
𝑑𝑑𝑋𝑋𝑛𝑛⎦

⎥
⎥
⎤
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