

Thermodynamics and Heat Transfer 23CVB116

Semester 2 2024

In-Person Exam Paper

This examination is to take place in-person at a central University venue under exam conditions. The standard length of time for this paper is **3 hours**.

You will not be able to leave the exam hall for the first 30 or final 15 minutes of your exam. Your invigilator will collect your exam paper when you have finished.

Help during the exam

Invigilators are not able to answer queries about the content of your exam paper. Instead, please make a note of your query in your answer script to be considered during the marking process.

If you feel unwell, please raise your hand so that an invigilator can assist you.

You may use a calculator for this exam. It must comply with the University's Calculator Policy for In-Person exams, in particular that it must not be able to transmit or receive information (e.g. mobile devices and smart watches are **not** allowed).

Answer TWO QUESTIONS in SECTION A. Answer TWO QUESTIONS in SECTION B.

All questions carry equal marks.

An 18-page formulae sheet, with tables and charts, is provided at the end of this paper.

Continues/...

1

.../continued

SECTION A (Answer TWO QUESTIONS in SECTION A)

- Q1. a) Describe the following terms with respect to heat transfer:
 - i) Isothermal.

[1 mark]

ii) Adiabatic.

[1 mark]

- b) Explain briefly what is meant by one-dimensional steady state heat transfer? [2 marks]
- c) The steady state heat flux through a 100 mm thick concrete wall is 225 W/m² when the inner and outer surface temperatures are 20°C and 10°C, respectively. Assuming one-dimensional heat transfer, what is the thermal conductivity of the concrete?

 [3 marks]
- d) The wall in Q1.c) is improved by adding 50mm of insulation with a thermal conductivity of 0.04 W/mK. What is the steady state heat flux when the inner and outer surface temperatures of the composite wall are 20°C and 10°C, respectively?

 [5 marks]
- e) Explain the difference between forced and free (or natural) convection using examples of each that are related to buildings.

[2 mark]

f) For an isothermal flat plate, the heat transfer coefficient for the entire plate when the flow is laminar over the entire plate, is given by:

$$\overline{Nu} = 0.664 \, Re^{1/2} \, Pr^{1/3}$$

Air at 30° C and atmospheric pressure flows over 1 m wide x 2 m long flat plate at 3 m/s. The plate is maintained at a uniform temperature of 10° C. Show that the flow is laminar (Re < $5x10^{5}$) and calculate the total rate of heat transfer. Note: the *characteristic length* is the length of the plate; the properties of air can be found in the lookup table in the formulae sheet.

[11 marks]

Continues/...

.../continued

Q2. a) Explain briefly what a heat exchanger is used for and give an example of a heat exchanger in a building.

[2 marks]

- b) Sketch a graph to show how the inlet and outlet temperatures (y-axis) vary with distance (x-axis) for a parallel flow heat exchanger with a hot fluid and a cold fluid.

 [4 marks]
- c) A parallel flow heat exchanger uses water, flowing at 150 kg/hour from 15°C to 40°C, to cool an oil flowing at 300 kg/hour and at an initial temperature of 180°C. The specific heat of the water is 4180 J/kgK and the specific heat of the oil is 1800 J/kgK.
 - i) Calculate the rate of heat transfer to determine the outlet temperature of the oil.
 [5 marks]
 - ii) Using the LMTD method, calculate the heat transfer area required for an overall heat transfer coefficient, U = 250 W/m²K.

[4 marks]

iii) Calculate the number of transfer units (NTU).

[6 marks]

iv) Calculate the effectiveness of the heat exchanger using a suitable equation from the look-up table in the formulae sheet.

[4 marks]

Q3. a) With respect to radiation heat transfer, define absorptivity (α), reflectivity (ρ), and transmissivity (τ) and show how they are related.

[4 marks]

b) Draw a diagram to illustrate irradiation (G) incident on a semi-transparent surface, the proportions of that radiation that are absorbed and transmitted, the emissive power of the surface (E) as a function of its temperature (T_s), and the resulting radiosity (J). Include reference to the absorptivity (α), reflectivity (α), transmissivity (α), and emissivity (α) of the surface.

[6 marks]

Question 3 continues/...

.../question 3 continued

- c) With respect to radiation view factors:
 - i) Explain the meaning of F_{1-2} .

[2 marks]

ii) A rectangular room has four walls, a floor, and a ceiling. Use the summation rule to write an equation for the relationship between the view factors from the floor to each or the four walls and to the ceiling.

[3 marks]

d) For the parallel rectangles shown below, determine the view factor F_{1-2} using an appropriate chart from the formulae sheet.

[3 marks]

e) Consider the perpendicular rectangles below. Determine the view factor F_{1-3} using the superposition rule and an appropriate chart from the formulae sheet.

[7 marks]

Continues/...

SECTION B (Answer TWO QUESTIONS in SECTION B)

Q4. a) One day in Loughborough in winter, the outdoor air temperature is 5°C and has 75% relative humidity. Calculate the partial pressure of water vapour, and hence calculate the temperature at which condensation would start to form on a surface. You should use formulae and data tables to calculate this, not the psychrometric chart.

[5 marks]

b) This outdoor air is then brought into a building and heated in a duct using a coil, as shown in Figure Q4 below. Explain what type of system this is and why (e.g. closed system, open system, adiabatic system etc.).

[2 marks]

Figure Q4

c) State the first law of thermodynamics and explain how it can be applied to the situation shown in Figure Q4.

[3 marks]

d) Heat is supplied to the air in the duct in Figure Q4 by a coil. State whether heat is a property or a path function, and explain the difference between properties and path functions.

[3 marks]

e) The outdoor air enters the duct (shown in Figure Q4) at 5°C and 75% relative humidity and is then heated to 21°C, without adding or removing moisture. Calculate the new relative humidity. You should use formulae and data tables to calculate this, not the psychrometric chart.

[4 marks]

Question 4 continues/...

.../question 4 continued

f) This heated air is then supplied to occupied spaces in a building. Comment on the relative humidity found in part (e). Explain whether or not this will give comfortable indoor conditions. Give reasons why or why not. If it is not comfortable, explain how this could be remedied.

[4 marks]

g) The duct (shown in Figure Q4) is required to supply air at a rate of 60 m³/min. The average velocity of air in the duct is not to exceed 8 m/s to avoid excessive vibration and pressure drops. The duct is circular in cross-section. Determine the minimum possible diameter of the duct.

[4 marks]

Q5. a) Explain the meaning of the following five terms: saturated liquid, saturated mixture, saturated vapour, superheated vapour and quality.

[5 marks]

b) If saturated liquid water is at 210°C, determine the pressure, specific volume, internal energy and enthalpy.

[4 marks]

c) 1 m³ of saturated liquid water at 210°C is expanded at a constant temperature in a closed system until its quality is 80%. Determine the total work produced by this expansion (in kJ).

[6 marks]

d) Determine whether any heat was lost or gained by the system described in part (c). If any heat was lost or gained, calculate this heat loss/gain (in kJ).

[3 marks]

e) If thermal energy is available at 210°C, and the ambient temperature is 10°C, determine the theoretical maximum efficiency of a heat engine operating between these two reservoirs.

[3 marks]

f) Calculate the ratio of any heat gains/losses to work output/input of the system described in part (c). Compare this to the efficiency found in part (e), and thus calculate the second-law efficiency of the system described in part (c).

[4 marks]

Continues/...

.../continued

Q6. a) An air-source heat pump is being used to provide space heating in a home. Explain the advantages of heat pumps over other space heating technologies, such as gas boilers or direct electric heating.

[2 marks]

b) Produce an annotated diagram showing how a heat pump works.

[5 marks]

c) The heat pump uses R-134a as its refrigerant. The refrigerant enters the compressor as a saturated vapour at 0.24 MPa and leaves the compressor as a superheated vapour at 0.8 MPa and 50°C. Find the enthalpy and internal energy of the refrigerant on entering and leaving the compressor.

[4 marks]

d) The mass flow rate of the refrigerant through the compressor is 0.03 kg/s. Calculate the work input of the compressor.

[2 marks]

e) Comment on the preferred radiator sizing for heat pumps, and explain the thermodynamic principle behind this.

[3 marks]

f) Heat is supplied to the home through the condenser of the heat pump. The refrigerant enters the condenser as superheated vapour at 0.8 MPa and 50°C, and leaves the condenser as saturated liquid at 30°C. Calculate the rate at which heat is supplied to the home (in kW).

[4 marks]

g) Calculate the COP of the heat pump.

[2 marks]

h) Comment on the effect of outdoor temperature on Air-Source Heat Pump performance, and any implications of this for national energy policy.

[3 marks]

D Allinson S Watson

LOUGHBOROUGH UNIVERSITY SCHOOL OF ARCHITECTURE, BUILDING AND CIVIL ENGINEERING

CVB116: HEAT TRANSFER - FORMULAE SHEET AND CHARTS

Conduction Heat Transfer

For a one-dimensional plane wall, rate of heat transfer (W): $q_x = \frac{kA}{L}(T_1 - T_2)$

Thermal resistance (K/W): $R = \frac{L}{kA}$

Two-dimensional steady state heat conduction heat transfer (W): $q = Sk(T_1 - T_2)$

Convection Heat Transfer

Heat flux between a fluid in motion and a bounding surface: $q'' = \frac{q}{A} = h(T_s - T_{\infty})$

Thermal resistance (K/W): $R = \frac{1}{hA}$

Rate of heat transfer in a flowing fluid (W): $q = \dot{m} \times c_p \times \Delta T$

Film temperature: $T_f = (T_s + T_{\infty})/2$

Prandtl number: $Pr = \frac{v}{\alpha} = \frac{\mu \times c_p}{k}$

Nusselt number: $Nu = \frac{h \times L_c}{k}$

Reynolds number: $Re = \frac{u_{\infty} \times L_c}{v} = \frac{\rho \times u_{\infty} \times L_c}{u}$

Grashof number: $Gr = \frac{g\beta(T_s - T_{\infty})L_c^3}{T_s^2}$

Rayleigh number: Ra = Gr × $Pr = \frac{g\beta(T_s - T_{\infty})L_c^3}{v\alpha}$

Properties of air

Properties of air at 1 atm pressure

Temp. <i>T</i> , °C	Density ρ, kg/m³	Specific Heat <i>c_p</i> J/kg·K	Thermal Conductivity k, W/m·K	Thermal Diffusivity α, m²/s	Dynamic Viscosity μ, kg/m·s	Kinematic Viscosity ν, m²/s	Prandtl Number Pr
-150 -100 -50 -40 -30	2.866 2.038 1.582 1.514 1.451	983 966 999 1002 1004	0.01171 0.01582 0.01979 0.02057 0.02134	$\begin{array}{c} 4.158 \times 10^{-6} \\ 8.036 \times 10^{-6} \\ 1.252 \times 10^{-5} \\ 1.356 \times 10^{-5} \\ 1.465 \times 10^{-5} \end{array}$	$\begin{array}{c} 8.636 \times 10^{-6} \\ 1.189 \times 10^{-6} \\ 1.474 \times 10^{-5} \\ 1.527 \times 10^{-5} \\ 1.579 \times 10^{-5} \end{array}$	3.013×10^{-6} 5.837×10^{-6} 9.319×10^{-6} 1.008×10^{-5} 1.087×10^{-5}	0.7246 0.7263 0.7440 0.7436 0.7425
-20 -10 0 5 10	1.394 1.341 1.292 1.269 1.246	1005 1006 1006 1006 1006	0.02211 0.02288 0.02364 0.02401 0.02439	$\begin{array}{c} 1.578 \times 10^{-5} \\ 1.696 \times 10^{-5} \\ 1.818 \times 10^{-5} \\ 1.880 \times 10^{-5} \\ 1.944 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.630 \times 10^{-5} \\ 1.680 \times 10^{-5} \\ 1.729 \times 10^{-5} \\ 1.754 \times 10^{-5} \\ 1.778 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.169 \times 10^{-5} \\ 1.252 \times 10^{-5} \\ 1.338 \times 10^{-5} \\ 1.382 \times 10^{-5} \\ 1.426 \times 10^{-5} \end{array}$	0.7408 0.7387 0.7362 0.7350 0.7336
15 20 25 30 35	1.225 1.204 1.184 1.164 1.145	1007 1007 1007 1007 1007	0.02476 0.02514 0.02551 0.02588 0.02625	$\begin{array}{c} 2.009 \times 10^{-5} \\ 2.074 \times 10^{-5} \\ 2.141 \times 10^{-5} \\ 2.208 \times 10^{-5} \\ 2.277 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.802\times10^{-5}\\ 1.825\times10^{-5}\\ 1.849\times10^{-5}\\ 1.872\times10^{-5}\\ 1.895\times10^{-5}\\ \end{array}$	$\begin{array}{c} 1.470 \times 10^{-5} \\ 1.516 \times 10^{-5} \\ 1.562 \times 10^{-5} \\ 1.608 \times 10^{-5} \\ 1.655 \times 10^{-5} \end{array}$	0.7323 0.7309 0.7296 0.7282 0.7268
40 45 50 60 70	1.127 1.109 1.092 1.059 1.028	1007 1007 1007 1007 1007	0.02662 0.02699 0.02735 0.02808 0.02881	$\begin{array}{c} 2.346 \times 10^{-5} \\ 2.416 \times 10^{-5} \\ 2.487 \times 10^{-5} \\ 2.632 \times 10^{-5} \\ 2.780 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.918 \times 10^{-5} \\ 1.941 \times 10^{-5} \\ 1.963 \times 10^{-5} \\ 2.008 \times 10^{-5} \\ 2.052 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.702\times10^{-5}\\ 1.750\times10^{-5}\\ 1.798\times10^{-5}\\ 1.896\times10^{-5}\\ 1.995\times10^{-5} \end{array}$	0.7255 0.7241 0.7228 0.7202 0.7177
80 90 100 120 140	0.9994 0.9718 0.9458 0.8977 0.8542	1008 1008 1009 1011 1013	0.02953 0.03024 0.03095 0.03235 0.03374	$\begin{array}{c} 2.931\times 10^{-5}\\ 3.086\times 10^{-5}\\ 3.243\times 10^{-5}\\ 3.565\times 10^{-5}\\ 3.898\times 10^{-5}\\ \end{array}$	$\begin{array}{c} 2.096 \times 10^{-5} \\ 2.139 \times 10^{-5} \\ 2.181 \times 10^{-5} \\ 2.264 \times 10^{-5} \\ 2.345 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.097 \times 10^{-5} \\ 2.201 \times 10^{-5} \\ 2.306 \times 10^{-5} \\ 2.522 \times 10^{-5} \\ 2.745 \times 10^{-5} \end{array}$	0.7154 0.7132 0.7111 0.7073 0.7041
160 180 200 250 300	0.8148 0.7788 0.7459 0.6746 0.6158	1016 1019 1023 1033 1044	0.03511 0.03646 0.03779 0.04104 0.04418	$\begin{array}{c} 4.241\times10^{-5}\\ 4.593\times10^{-5}\\ 4.954\times10^{-5}\\ 5.890\times10^{-5}\\ 6.871\times10^{-5} \end{array}$	$\begin{array}{c} 2.420 \times 10^{-5} \\ 2.504 \times 10^{-5} \\ 2.577 \times 10^{-5} \\ 2.760 \times 10^{-5} \\ 2.934 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.975 \times 10^{-5} \\ 3.212 \times 10^{-5} \\ 3.455 \times 10^{-5} \\ 4.091 \times 10^{-5} \\ 4.765 \times 10^{-5} \end{array}$	0.7014 0.6992 0.6974 0.6946 0.6935
350 400 450 500 600	0.5664 0.5243 0.4880 0.4565 0.4042	1056 1069 1081 1093 1115	0.04721 0.05015 0.05298 0.05572 0.06093	$\begin{array}{l} 7.892\times10^{-5} \\ 8.951\times10^{-5} \\ 1.004\times10^{-4} \\ 1.117\times10^{-4} \\ 1.352\times10^{-4} \end{array}$	$\begin{array}{c} 3.101\times10^{-5}\\ 3.261\times10^{-5}\\ 3.415\times10^{-5}\\ 3.563\times10^{-5}\\ 3.846\times10^{-5} \end{array}$	$\begin{array}{c} 5.475 \times 10^{-5} \\ 6.219 \times 10^{-5} \\ 6.997 \times 10^{-5} \\ 7.806 \times 10^{-5} \\ 9.515 \times 10^{-5} \end{array}$	0.6937 0.6948 0.6965 0.6986 0.7037
700 800 900 1000 1500 2000	0.3627 0.3289 0.3008 0.2772 0.1990 0.1553	1135 1153 1169 1184 1234 1264	0.06581 0.07037 0.07465 0.07868 0.09599 0.11113	1.598×10^{-4} 1.855×10^{-4} 2.122×10^{-4} 2.398×10^{-4} 3.908×10^{-4} 5.664×10^{-4}	$\begin{array}{l} 4.111\times10^{-5} \\ 4.362\times10^{-5} \\ 4.600\times10^{-5} \\ 4.826\times10^{-5} \\ 5.817\times10^{-5} \\ 6.630\times10^{-5} \end{array}$	$\begin{array}{c} 1.133 \times 10^{-4} \\ 1.326 \times 10^{-4} \\ 1.529 \times 10^{-4} \\ 1.741 \times 10^{-4} \\ 2.922 \times 10^{-4} \\ 4.270 \times 10^{-4} \end{array}$	0.7092 0.7149 0.7206 0.7260 0.7478 0.7539

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Heat Exchangers

Heat transfer rate (W): $q = U \times A \times \Delta T_{lm}$

Log mean temperature difference (LMTD): $\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{ln(\Delta T_1/\Delta T_2)}$

Effectiveness: $\varepsilon = \frac{\text{Actual rate of heat transfer}}{\text{Maximum possible rate of heat transfer}}$

$$\varepsilon = \frac{q}{q_{max}} = \frac{C_h(T_{h,i} - T_{h,o})}{C_{min}(T_{h,i} - T_{c,i})} = \frac{C_c(T_{c,o} - T_{c,i})}{C_{min}(T_{h,i} - T_{c,i})}$$

$$q = \varepsilon \times C_{min} (T_{h,i} - T_{c,i})$$

Heat capacity rate (W/K): $C = \dot{m} \times c_p$

Heat capacity ratio: $C_r = \frac{C_{min}}{C_{max}}$

Number of transfer units: $NTU = \frac{UA}{C_{min}}$

Effectiveness relations – look-up table:

Flow Arrangement	Relation	
Parallel flow	$arepsilon = rac{1 - \exp[-\operatorname{NTU}(1 + C_r)]}{1 + C_r}$	(11.28a)
Counterflow	$egin{array}{lll} arepsilon &=& rac{1-\exp{\left[-\mathrm{NTU}(1-C_r) ight]}}{1-C_r\exp{\left[-\mathrm{NTU}(1-C_r) ight]}} & (C_r < 1) \ & & & & & & & & & & & & & & & & & & $	(11.29a)

Bergman, Lavine, Incropera, DeWitt. 2018, Fundamentals of Heat and Mass Transfer, 8th Edition, Wiley.

Transient Heat Transfer

Lumped capacitance method:
$$t = \frac{\rho V c_p}{hA} ln \left(\frac{\theta_i}{\theta}\right) \qquad \frac{\theta_i}{\theta} = \frac{(T_i - T_{\infty})}{(T - T_{\infty})}$$

$$\frac{\theta}{\theta_i} = exp\left[-\left(\frac{hA}{\rho V c_p}\right)t\right] \qquad \qquad \frac{\theta}{\theta_i} = \frac{(T - T_{\infty})}{(T_i - T_{\infty})}$$

Biot number:
$$Bi = \frac{hL_c}{k}$$
 $L_c = \frac{V}{A}$

Radiation Heat Transfer

Emissive power (W/m²): $E = \varepsilon \sigma T_s^4$

Stefan-Boltzmann constant, $\sigma = 5.67 \text{x} 10^{-8} \text{ W/m}^2 \text{K}^4$

View factor between two differential areas: $F_{dA1-dA2} = \frac{\cos \theta_1 \cos \theta_2}{\pi R^2} dA_2$

Reciprocity relation:
$$A_1F_{1-2} = A_2F_{2-1}$$

Summation rule:
$$\sum_{i=1}^{N} F_{i-j} = 1$$

Superposition rule:
$$F_{1-(2\&3)} = F_{1-2} + F_{1-3}$$

Net radiation exchange (blackbody surfaces): $q_{rad,1-2} = F_{1-2}A_1(E_{b1} - E_{b2})$

Radiation view factors (2013 ASHRAE Handbook of Fundamentals)

A. PERPENDICULAR RECTANGLES WITH COMMON EDGE

B. ALIGNED PARALLEL RECTANGLES

CVB116: THERMODYNAMICS - FORMULAE SHEET, TABLES AND CHARTS

 $0^{\circ}C = 273.15 \text{ K}$

Atmospheric pressure = 101.325 kPa

Ideal gas law: Pv = RT or PV = mRT

For air at 300 K:

• Gas constant: R = 0.2870 kJ/kg.K

• Specific heat at constant pressure: C_p = 1.005 kJ/kg.K

• Specific heat at constant volume: C_v = 0.718 kJ/kg.K

Specific humidity: $\omega = \frac{m_v}{m_a} = 0.622 \frac{P_v}{P_a} = \frac{0.622 \times P_v}{P - P_v}$

Relative humidity: $arphi=rac{m_v}{m_g}=rac{P_v}{P_g}$

Law of partial pressures: $P = P_a + P_v$

Total enthalpy of moist air: $h=h_a+\omega h_g$

Approximate enthalpies at room/outdoor conditions (-10°C to +50°C):

• Dry air: $h_a=1.005 \times T$

• Water vapour: $h_g = 2500.9 + 1.82 \times T$

• (These two formulae are for temperature measured in °C).

Kinetic energy: $E_k = \frac{1}{2} m V^2$

Potential energy: $E_p = mgz$

Mass flow rate: $\dot{m} = \rho V A$

Carnot efficiency for heat engine: $\eta_{th,\,rev}=1-rac{T_L}{T_H}$

Second-law efficiency: $\eta_{II} = \frac{\eta_{th}}{\eta_{th,rev}}$

Carnot COP for refrigeration: $COP_{R,rev} = \frac{T_L}{T_H - T_L}$

Carnot COP for heat pump: $COP_{HP,rev} = \frac{T_H}{T_H - T_L}$

Liquid water

Temperature, °C	Density $ ho$, kg/m ³	Specific heat c _p , kJ/kg·K
0	1000	4.22
25	997	4.18
50	988	4.18
75	975	4.19
100	958	4.22

Saturated water - Temperature table

			<i>fic volume,</i> m³/kg		<i>Internal e</i> kJ/kj			Enthal _l kJ/kg			Entropy, kJ/kg·K	
Temp.	Sat. , press., P _{sat} kPa	Sat. Iiquid, <i>v_f</i>	Sat. vapor, v _g	Sat. liquid, u _f	Evap., <i>u_{fg}</i>	Sat. vapor, u _g	Sat. liquid, h _f	Evap., <i>h_{fg}</i>	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s _g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559	9.1556 9.0249 8.8999
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.5435
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 ⁻ 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	6.0470 5.9319 5.8193 5.7092 5.6013	7.2952 7.2382 7.1829
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.4956 5.3919 5.2901 5.1901 5.0919	7.0265 6.9773 6.9294
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417		6.7927
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.5335 4.4448 4.3572 4.2705 4.1847 4.0997	6.5841 6.5447 6.5059 6.4678

Saturated water—Temperature table (Concluded)

			ic volume, 1 ³ /kg	Ir.	nternal er kJ/kg	nergy,		Enthalp kJ/kg		Entropy, kJ/kg·K		
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. Iiquid, <i>h_f</i>	Evap., <i>h_{fg}</i>	Sat. vapor, h_g	Sat. liquid, s _f	Evap., S _{fg}	Sat. vapor, s _g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.9318 3.8489	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7898 2.7066 2.6225 2.5374 2.4511	5.8210 5.7834 5.7450
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.3633 2.2737 2.1821 2.0881 1.9911	5.6243 5.5816 5.5372
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.7857 1.6756 1.5585	5.3358
355 360 365 370 373,95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.2942 1.1373 0.9489 0.6890 0	5.0537 4.9493

Saturated water - Pressure table

Saturat	Saturated water—Pressure table											
			<i>fic volume,</i> m³/kg		<i>Internal e</i> kJ/kg			Enthalpy kJ/kg	<i>'</i> ,		<i>Entropy,</i> kJ/kg∙K	
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, <i>h_g</i>	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003	129.19 87.964 66.990 54.242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1059 0.1956 0.2606 0.3118 0.3543	8.8690 8.6314 8.4621	8.7227 8.6421
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	7.0752 6.9370 6.8234 6.6430 6.5019	7.8302 7.7675 7.6691
75 100 101.325 125 150	91.76 99.61 5 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2662.4 2675.0 2675.6 2684.9 2693.1	1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.3545
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2700.2 2706.3 2711.7 2716.5 2720.9	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.1716 7.1270 7.0877 7.0525 7.0207
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	594.32	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9917 6.9650 6.9402 6.9171 6.8955
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54 655.16	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8205 1.8604 1.8970 1.9308 1.9623	5.0356 4.9603 4.8916 4.8285 4.7699	6.8561 6.8207 6.7886 6.7593 6.7322
700 750	164.95 167.75	0.001108 0.001111	0.27278 0.25552	696.23 708.40	1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4	2762.8 2765.7	1.9918 2.0195	4.7153 4.6642	6.7071 6.6837

		,	volume, /kg	In	<i>ternal en</i> kJ/kg	ergy,		Enthalpy, kJ/kg		Entropy, kJ/kg∙K			
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. Iiquid, <i>s_f</i>	Evap., s _{fg}	Sat. vapor, s_g	
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	719.97 731.00 741.55 751.67 761.39	1846.9 1838.1 1829.6	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2773.0 2775.2	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862 4.4470	6.6616 6.6409 6.6213 6.6027 6.5850	
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	779.78 796.96 813.10 828.35 842.82	1790.9 1776.8 1763.4	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2783.8 2786.5 2788.9	2.1785 2.2159 2.2508 2.2835 2.3143	4.3735 4.3058 4.2428 4.1840 4.1287	6.5520 6.5217 6.4936 6.4675 6.4430	
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	876.12 906.12 933.54 958.87 1004.6	1693.0 1667.3	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9		2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856	
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378		1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148	
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1433.9	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2706.3	3.2866 3.3603	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939	
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1585.5	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2662.7 2637.9 2610.8 2581.0 2547.7	3.6848	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791	
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8	2339.2 2294.8 2233.5 2092.4	1732.2 1776.8 1826.6 1888.0 2011.1 2084.3	777.8 689.2 585.5 450.4 161.5	2338.4 2172.6		1.2343 1.0860 0.9164 0.7005 0.2496 0	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070	

Superheated water

T	V .	u	h	S	V	и	h	S	v	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K
	P =	= 0.01 MF	Pa (45.81	°C)*	P =	0.05 MF	a (81.32°	C)	P =	0.10 MI	Pa (99.61	°C)
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867	2443.3	2592.0	8.1741								, .0003
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	7.6148
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.8356
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.2172
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	9.3424
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8		10.1000	5.4137	3856.7	4398.0	9.7800
1000 1100	58.758	4055.3	4642.8	11.0429	11.7513	4055.2		10.3000	5.8755	4055.0	4642.6	9.9800
1200	63.373 67.989	4260.0	4893.8	11.2326	12.6745	4259.9		10.4897	6.3372	4259.8		10.1698
1300		4470.9	5150.8	11.4132	13.5977	4470.8		10.6704	6.7988	4470.7		10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
	P =	0.20 MP	a (120.2)	1°C)	P =	0.30 MPa	(133.52°	°C)	<i>P</i> =	0.40 MP	a (143.61	°C)
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088		2752.8	6.9306
200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132	0.53434		2860.9	7.1723
250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520		2964.5	7.3804
300	1.31623	2808.8	3072.1	7.8941	0.87535	2807.0	3069.6	7.7037	0.65489		3067.1	7.5677
400	1.54934	2967.2	3277.0	8.2236	1.03155	2966.0	3275.5	8.0347	0.77265		3273.9	7.9003
500	1.78142	3131.4	3487.7	8.5153	1.18672	3130.6	3486.6	8.3271	0.88936		3485.5	8.1933
600	2.01302	3302.2	3704.8	8.7793	1.34139	3301.6	3704.0	8.5915	1.00558	3301.0	3703.3	8.4580
700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345	1.12152	3479.0	3927.6	8.7012
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605	1.23730	3663.9	4158.9	8.9274
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298	3855.7	4396.9	9.1394
1000	2.93755	4054.8	4642.3	9.6599	1.95824	4054.5	4642.0	9.4726	1.46859	4054.3	4641.7	9.3396
1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.5295
1200	3.39938	4470.5	5150.4	10.0304	2.26624	4470.3	5150.2	9.8431	1.69966	4470.2	5150.0	9.7102
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.8828
	P =	0.50 MP	a (151.83	3°C)	<i>P</i> =	0.60 MPa	(158.83°	C)	P =	0.80 MPa	(170.41	°C)
Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.24035	2576.0	2768.3	6.6616
200	0.42503	2643.3	2855.8	7.0610	0.35212	2639.4	2850.6	6.9683	0.26088		2839.8	6.8177
250	0.47443	2723.8	2961.0	7.2725	0.39390	2721.2	2957.6	7.1833	0.29321		2950.4	7.0402
300	0.52261	2803.3	3064.6	7.4614	0.43442	2801.4	3062.0	7.3740	0.32416		3056.9	7.2345
350	0.57015	2883.0	3168.1	7.6346	0.47428	2881.6	3166.1	7.5481	0.35442		3162.2	7.4107
400	0.61731	2963.7	3272.4	7.7956	0.51374	2962.5	3270.8	7.7097	0.38429		3267.7	7.5735
500	0.71095	3129.0	3484.5	8.0893	0.59200	3128.2	3483.4	8.0041	0.44332		3481.3	7.8692
600	0.80409	3300.4	3702.5	8.3544	0.66976	3299.8	3701.7	8.2695	0.50186		3700.1	8.1354
700	0.89696	3478.6	3927.0	8.5978	0.74725	3478.1	3926.4	8.5132	0.56011		3925.3	8.3794
800	0.98966		4158.4	8.8240	0.82457	3663.2	4157.9	8.7395	0.61820	3662.5	4157.0	8.6061
900	1.08227	3855.4	4396.6	9.0362	0.90179	3855.1	4396.2	8.9518	0.67619		4395.5	8.8185
1000	1.17480		4641.4	9.2364	0.97893	4053.8	4641.1	9.1521	0.73411	4053.3	4640.5	9.0189
1100	1.26728		4892.6	9.4263	1.05603	4258.8	4892.4	9.3420	0.79197	4258.3	4891.9	9.2090
1200	1.35972	4470.0	5149.8	9.6071	1.13309	4469.8	5149.6	9.5229	0.84980	4469.4	5149.3	9.3898
1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.90761	4686.1	5412.2	9.5625
												-

 $^{{}^{*}}$ The temperature in parentheses is the saturation temperature at the specified pressure.

0 1 1	promotion to be seen a	10 11 0	
Superheated	water	(Continued)	

Saturated refrigerant-134a - Temperature table

Saturated refrigerant-134a—Temperature table												
		Specific m³/l		Inte	ernal ene kJ/kg	rgy,		Enthalpy kJ/kg	/,		Entropy, kJ/kg·K	
Temp T°C	Sat. ., press., P _{sat} kPa	Sat. Iiquid, <i>v_f</i>	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., <i>u_{fg}</i>	Sat. vapor, u _g	Sat. liquid, h _f	Evap., <i>h_{fg}</i>	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96	0.000 2.515 5.037 7.566 10.10	225.86 224.61 223.35 222.09 220.81	225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70	12.65 15.20 17.76 20.33 22.91	219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	56.99 59.68	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	67.83 70.57 73.32	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310

Satu	Saturated refrigerant-134a—Temperature table (Concluded)											
		Specific m³/		Inte	ernal ene kJ/kg	ergy,		<i>Enthalpy</i> kJ/kg		Entropy, kJ/kg·K		
Temp T °C	Sat. o., press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, v _g	Sat. Iiquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s _g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215

Saturated refrigerant-134a - Pressure table

Saturated refrigerant-134a—Pressure table												
			volume, ³ /kg	<i>Internal energy,</i> kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg·K		
Press., P kPa	Sat. temp., T _{sat} °C	Sat. Iiquid, <i>v_f</i>	Sat. vapor, v _g	Sat. Iiquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
60 70 80 90 100	-36.95 -33.87 -31.13 -28.65 -26.37	0.0007098 0.0007144 0.0007185 0.0007223 0.0007259	0.31121 0.26929 0.23753 0.21263 0.19254		205.32 203.20 201.30 199.57 197.98	209.12 210.88 212.46 213.88 215.19		218.65		0.01634 0.03267 0.04711 0.06008 0.07188	0.94807 0.92775 0.90999 0.89419 0.87995	0.96441 0.96042 0.95710 0.95427 0.95183
120 140 160 180 200	-22.32 -18.77 -15.60 -12.73 -10.09	0.0007324 0.0007383 0.0007437 0.0007487 0.0007533	0.16212 0.14014 0.12348 0.11041 0.099867	22.40 26.98 31.09 34.83 38.28	195.11 192.57 190.27 188.16 186.21	217.51 219.54 221.35 222.99 224.48	22.49 27.08 31.21 34.97 38.43	212.08 209.90 207.90	236.97 239.16 241.11 242.86 244.46	0.09275 0.11087 0.12693 0.14139 0.15457	0.85503 0.83368 0.81496 0.79826 0.78316	0.94779 0.94456 0.94190 0.93965 0.93773
240 280 320 360 400	-5.38 -1.25 2.46 5.82 8.91	0.0007620 0.0007699 0.0007772 0.0007841 0.0007907	0.083897 0.072352 0.063604 0.056738 0.051201	44.48 49.97 54.92 59.44 63.62	182.67 179.50 176.61 173.94 171.45	227.14 229.46 231.52 233.38 235.07	44.66 50.18 55.16 59.72 63.94		253.81	0.17794 0.19829 0.21637 0.23270 0.24761	0.75664 0.73381 0.71369 0.69566 0.67929	0.93458 0.93210 0.93006 0.92836 0.92691
450 500 550 600 650	12.46 15.71 18.73 21.55 24.20	0.0007985 0.0008059 0.0008130 0.0008199 0.0008266	0.045619 0.041118 0.037408 0.034295 0.031646	68.45 72.93 77.10 81.02 84.72	168.54 165.82 163.25 160.81 158.48	237.00 238.75 240.35 241.83 243.20	68.81 73.33 77.54 81.51 85.26	188.71 185.98 183.38 180.90 178.51	259.30 260.92 262.40	0.26465 0.28023 0.29461 0.30799 0.32051	0.66069 0.64377 0.62821 0.61378 0.60030	0.92535 0.92400 0.92282 0.92177 0.92081
700 750 800 850	26.69 29.06 31.31 33.45	0.0008331 0.0008395 0.0008458 0.0008520	0.029361 0.027371 0.025621 0.024069	88.24 91.59 94.79 97.87	156.24 154.08 152.00 149.98	244.48 245.67 246.79 247.85	88.82 92.22 95.47 98.60	176.21 173.98 171.82 169.71	267.29 268.31	0.33230 0.34345 0.35404 0.36413	0.58763 0.57567 0.56431 0.55349	0.91994 0.91912 0.91835 0.91762
900 950 1000 1200 1400	35.51 37.48 39.37 46.29 52.40	0.0008580 0.0008641 0.0008700 0.0008934 0.0009166	0.022683 0.021438 0.020313 0.016715 0.014107	100.83 103.69 106.45 116.70 125.94	148.01 146.10 144.23 137.11 130.43	248.85 249.79 250.68 253.81 256.37	104.51 107.32 117.77	167.66 165.64 163.67 156.10 148.90		0.37377 0.38301 0.39189 0.42441 0.45315	0.54315 0.53323 0.52368 0.48863 0.45734	0.91692 0.91624 0.91558 0.91303 0.91050
1600 1800 2000 2500 3000	57.88 62.87 67.45 77.54 86.16	0.0009400 0.0009639 0.0009886 0.0010566 0.0011406	0.012123 0.010559 0.009288 0.006936 0.005275	134.43 142.33 149.78 166.99 183.04	124.04 117.83 111.73 96.47 80.22	258.47 260.17 261.51 263.45 263.26	151.76 169.63	141.93 135.11 128.33 111.16 92.63	277.86 279.17 280.09 280.79 279.09	0.47911 0.50294 0.52509 0.57531 0.62118	0.42873 0.40204 0.37675 0.31695 0.25776	0.90784 0.90498 0.90184 0.89226 0.87894

Superheated Refrigerant-134a

Superheated refrigerant-134a													
T	V	и	h	S	V	и	h	S	V	и	h	S	
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	
	$P = 0.06 \text{ MPa} (T_{\text{sat}} = -36.95^{\circ}\text{C})$				P = 0	.10 MPa ($T_{\rm sat} = -26$.37°C)	$P = 0.14 \text{ MPa} (T_{\text{sat}} = -18.77^{\circ}\text{C})$				
Sat.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16		
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721	0.1.101.	215.01			
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724	
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60		
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93		
20	0.39302	249.35	272.94	1.1353	0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38		
30	0.40705	256.95	281.37	1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97		
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70		
	0.42102		298.74	1.2191	0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57		
50		272.64	307.66		0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59		
60	0.44883	280.73		1.2463		288.64	316.26	1.2305	0.19635	288.28	315.77		
70	0.46269	288.99	316.75	1.2732	0.27626				51.0 10.0		325.09		
80	0.47651	297.41	326.00	1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75 305.38	334.57		
90	0.49032	306.00	335.42	1.3260	0.29303	305.69	334.99	1.2836	0.20847				
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814	
	P = 0.1	18 MPa (7	$T_{\text{sat}} = -12$.73°C)	P = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	$P = 0.24 \text{ MPa } (T_{\text{sat}} = -5.38^{\circ}\text{C})$				
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346	
-10	0.11189	225.02	245.16	0.9484	0.09991	224.55	244.54	0.9380					
0	0.11722	232.48	253.58	0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519	
10	0.12240	240.00	262.04	1.0102	0.10955	239.67	261.58	1.0004	0.09026	238.98		0.9831	
20	0.12748	247.64	270.59	1.0399	0.11418	247.35	270.18	1.0303	0.09423	246.74		1.0134	
30	0.13248	255.41	279.25	1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16		
40	0.13741	263.31	288.05	1.0975	0.12322	263.08	287.72	1.0882	0.10193	262.59	287.06		
50	0.14230	271.36	296.98	1.1256	0.12766	271.15	296.68	1.1163	0.10570	270.71	296.08		
60	0.14230	279.56	306.05	1.1532	0.13206	279.37	305.78	1.1441	0.10942	278.97		1.1280	
70	0.14715	287.91	315.27	1.1805	0.13641	287.73	315.01	1.1714	0.11310	287.36	314.51		
80	0.15190	296.42	324.63	1.2074	0.13041	296.25	324.40	1.1983	0.11675	295.91	323.93		
90	0.15673	305.07	334.14	1.2339	0.14504	304.92	333.93	1.2249	0.12038	304.60	333.49		
100	0.16149	313.88	343.80	1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20		
100	0.10022	313.00	343.00	1.2002	0.14933	313.74	343.00	1.2012	0.12030	313.44	040.20	1,2000	
$P = 0.28 \text{ MPa} (T_{\text{sat}} = -1.25^{\circ}\text{C})$					P =	0.32 MPa	$(T_{\rm sat} = 2.4)$	16°C)	$P = 0.40 \text{ MPa } (T_{\text{sat}} = 8.91^{\circ}\text{C})$				
Sat.	0.07235	229.46	249.72	0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269	
0	0.07282	230.44	250.83	0.9362	46								
10	0.07646	238.27	259.68	0.9680	0.06609	237.54	258.69	0.9544	0.051506	235.97	256.58	0.9305	
20	0.07997	246.13	268.52	0.9987	0.06925	245.50	267.66	0.9856	0.054213	244.18	265.86	0.9628	
30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796	252.36		0.9937	
40	0.08672	262.10	286.38	1.0576	0.07530	261.60	285.70	1.0451	0.059292	260.58	284.30	1.0236	
50	0.09000	270.27	295.47	1.0862	0.07823	269.82	294.85	1.0739	0.061724			1.0528	
60	0.09324	278.56	304.67	1.1142	0.08111	278.15	304.11	1.1021	0.064104			1.0814	
70	0.09644	286.99	314.00	1.1418	0.08395	286.62	313.48	1.1298	0.066443			1.1094	
80	0.09961	295.57	323.46	1.1690	0.08675	295.22	322.98	1.1571	0.068747	294.53		1.1369	
90	0.10275	304.29	333.06	1.1958	0.08953	303.97	332.62	1.1840	0.071023				
100	0.10273	313.15	342.80	1.2222	0.09229	312.86	342.39	1.2105	0.073274			1.1907	
110	0.10387	322.16	352.68	1.2483	0.09223	321.89	352.30	1.2367	0.075504			1.2171	
120	0.10897	331.32	362.70	1.2742	0.09303	331.07	362.35	1.2626	0.073304	330.55		1.2431	
130	0.11203	340.63	372.87	1.2997	0.10045	340.39	372.54	1.2882	0.077913	339.90		1.2688	
140	0.11312	350.09	383.18	1.3250	0.10045	349.86	382.87	1.3135	0.079913	349.41		1.2942	
140	0.11010	330.03	303,10	1.3230	0.10314	343.00	302.07	1.0100	0.002090	545,41	002.21	1.1.5	

Superheated refrigerant-134a (Continued)

Superheated refrigerant-134a (Continued)												
T	V	и	h	S	V	и	h	S	V	И	h	S
°C	m ³ /kg	kJ/kg		kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg		kJ/kg⋅K
	P = 0.9	$T_{\rm sat} = 15.$	71°C)	P = 0	.60 MPa ($T_{\rm eat} = 21.5$	55°C)	$P = 0.70 \text{ MPa} (T_{\text{sat}} = 26.69^{\circ}\text{C})$				
Sat.	0.041118	238 75	250 30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.041115		263.46		0.034293	241.03	202.40	0.9210	0.029361	244.40	200.03	0.9199
30	0.044338		273.01		0.035984	249.22	270.81	0.9499	0.029966	247.48	268.45	0.9313
40	0.046456		282.48		0.037865	257.86	280.58	0.9816	0.023300	256.39	278.57	0.9641
50	0.048499				0.039659	266.48	290.28	1.0121	0.0333322	265.20	288.53	0.9954
60	0.050485			1.0599	0.041389	275.15	299.98	1.0417	0.034875	274.01	298.42	1.0256
70	0.052427			1.0883	0.043069	283.89	309.73	1.0705	0.034373	282.87	308.33	1.0549
80	0.054331		320.80		0.044710	292.73	319.55	1.0987	0.037829	291.80	318.28	1.0835
90	0.056205			1.1436	0.046318	301.67	329.46	1.1264	0.039250	300.82	328.29	1.1114
100	0.058053				0.047900	310.73	339.47	1.1536	0.040642	309.95	338.40	1.1389
110	0.059880		350.57	1.1971	0.049458	319.91	349.59	1.1803	0.042010	319.19	348.60	1.1658
120	0.061687		360.73	1.2233	0.050997	329.23	359.82	1.2067	0.043358	328.55	358.90	1.1924
130	0.063479		371.03		0.052519	338.67	370.18	1.2327	0.044688	338.04	369.32	1.2186
140	0.065256		381.46		0.054027	348.25	380.66	1.2584	0.046004	347.66	379.86	1.2444
150	0.067021		392.02	1.2999	0.055522	357.96	391.27	1.2838	0.047306	357.41	390.52	1.2699
160	0.068775		402.72		0.057006	367.81	402.01	1.3088	0.048597	367.29	401.31	1.2951
	_											
Sat.	P = 0.8 0.025621	30 MPa (0.9183	$P = 0.90 \text{ MPa} (T_{\text{sat}} = 35.51^{\circ}\text{C})$ 0.022683 248.85 269.26 0.9169				$P = 1.00 \text{ MPa} (T_{\text{sat}} = 39.37^{\circ}\text{C})$ 0.020313 250.68 270.99 0.9156			
40	0.023021		276.45		0.022003	253.13	274.17	0.9327	0.020313	251.30	271.71	0.9179
50	0.027633		286.69		0.023373	262.44	284.77	0.9660	0.020400	260.94	282.74	0.9525
60	0.029973		296.81	1.0110	0.024809	271.60	295.13	0.9976	0.021790	270.32	293.38	0.9850
70	0.029973		306.88	1.0408	0.026146	280.72	305.39	1.0280	0.023068	270.52	303.85	1.0160
80	0.031540				0.027413	289.86	315.63	1.0574	0.024201	288.86	314.25	1.0458
90	0.032033		327.10	1.0981	0.029806	299.06	325.89	1.0860	0.025398	298.15	324.64	1.0438
100	0.035193		337.30	1.1258	0.030951	308.34	336.19	1.1140	0.020432	307.51	335.06	1.1031
110	0.036420		347.59	1.1530	0.032068	317.70	346.56	1.1414	0.028584	316.94	345.53	1.1308
120	0.037625		357.97	1.1798	0.032066	327.18	357.02	1.1684	0.029592	326.47	356.06	1.1580
130	0.038813		368.45	1.2061	0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	1.1846
140	0.039985		379.05	1.2321	0.035302	346.46	378.23	1.2210	0.031554	345.85	377.40	1.2109
150	0.041143		389.76	1.2577	0.036349	356.28	389.00	1.2467	0.031534	355.71	388.22	1.2368
160	0.042290		400.59	1.2830	0.037384	366.23	399.88	1.2721	0.033457	365.70	399.15	1.2623
170	0.043427		411.55	1.3080	0.037304	376.31	410.88	1.2972	0.033437	375.81	410.20	1.2875
180	0.044554		422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
100								n 6 5				
C-+		20 MPa ($P = 1.40 \text{ MPa} (T_{\text{sat}} = 52.40^{\circ}\text{C})$				$P = 1.60 \text{ MPa} (T_{\text{sat}} = 57.88^{\circ}\text{C})$			
Sat. 50	0.016715 0.017201		273.87		0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
60	0.017201		289.64		0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	0.9163
70	0.018404		300.61		The same of the same of the same of							0.9163
80	0.019502		311.39	1.0248	0.016060 0.017023	274.62	297.10	0.9733	0.013430	271.76	293.25	0.9333
90	0.020529		322.07	1.0546		284.51	308.34	1.0056	0.014362	282.09	305.07	1.0194
100	0.021306		332.73	1.0836	0.017923 0.018778	294.28	319.37	1.0364	0.015215	292.17	316.52	1.0500
110	0.022442			1.1118	0.018778	304.01 313.76	330.30 341.19	1.0661	0.016014 0.016773	302.14 312.07	327.76 338.91	1.0300
120	0.023348		354.11	1.1116	0.019397	323.55		1.0949	0.010773			1.1081
130	0.024228		364.88	1.1664	0.020388	333.41	352.09 363.02	1.1230	0.017500	322.02 332.00	350.02 361.12	1.1360
140	0.025086	344.61			0.021155	343.34	363.02	1.1504	0.018201		361.12	1.1632
150	0.025927		386.66	1.1930	0.021904	353.37	385.07	1.1773 1.2038	0.018882	342.05 352.17	383.44	1.1900
160	0.026755		397.69	1.2449	0.022636	363.51	396.20	1.2298	0.019545	362.17	394.69	1.2163
170	0.027366		408.82	1.2703	0.023355	373.75	407.43	1.2554	0.020194	362.38	406.02	1.2421
180	0.028367				0.024061	384.10	418.76	1.2807	0.020830	372.69	417.44	1.2421
	0.023100	303.00	120.07	1.2334	0.024/0/	304,10	+10.70	1.2007	0.021400	303.11	417.44	1.2070

Psychrometric chart

Copyright © Loughborough University. All rights reserved.