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DIGITAL CONTROL 

23WSC356 

 
Semester 2 In-Person Exam paper 

 

This examination is to take place in-person at a central University venue under exam 

conditions. The standard length of time for this paper is 2 hours. 

 

You will not be able to leave the exam hall for the first 30 or final 15 minutes of your exam. 

Your invigilator will collect your exam paper when you have finished. 

 
 

Help during the exam 

 

Invigilators are not able to answer queries about the content of your exam paper. Instead, 

please make a note of your query in your answer script to be considered during the 

marking process. 

 

If you feel unwell, please raise your hand so that an invigilator can assist you. 
 

Answer ALL FOUR questions. 

Questions carry the marks shown. 

Use of a calculator is permitted - It must comply with the University’s Calculator Policy for 

In-Person exams, in particular that it must not be able to transmit or receive information 

(e.g. mobile devices and smart watches are not allowed). 

A range of formulae and tables likely to be of benefit in the solution of these questions is 

provided at the rear of the paper. 
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1. Short question 

a) Draw a block diagram of the digital filter that represents the 

difference equation 

𝑦𝑘 = 𝑎0𝑢𝑘 − 𝑎1𝑢𝑘−1 + 𝑏1𝑦𝑘−1 + 𝑏2𝑦𝑘−2 

where 𝑦𝑘−𝑛 is the sampled output and 𝑢𝑘−𝑛 is the sampled input (at 

the nth sample interval). Be sure to label the blocks and signal paths 

clearly. [4 marks] 

b) Considering the following digital transfer function: 

𝑦(𝑧)

𝑢(𝑧)
=

20

1 − 4𝑧−1
 

i. Give the z-transform expression for the step response. [3 marks] 

ii. Calculate the time response of the step response for the first 

four samples. [4 marks] 

c) Considering a pair of complex poles at 𝑧 = 0.8 ± 0.6𝑗 in the z-plane: 

i. Sketch a diagram of the complex z-plane showing the position 

of this pair of poles including the unit circle [2 marks] 

ii. Comment on whether this pole pair is stable or unstable or 

marginally stable. [1 mark] 

d) Considering the following differential equation and the 

corresponding s-domain transfer function: 

𝑦̇(𝑡) + 5𝑦(𝑡) = 20𝑥(𝑡) 

𝐺(𝑠) =
𝑦(𝑠)

𝑥(𝑠)
=

20

𝑠 + 5
 

i. Obtain the difference equation from the differential equation 

assuming trapezoidal integration. Assume a sample time of 

𝑇 = 0.2 s and calculate the coefficients to a maximum of 3 

decimal places. [4 marks] 

ii. Write down the transfer function in discrete time (z-domain) 

based on the difference equation derived in (i). [3 marks] 

iii. Apply the bilinear transform to obtain a transfer function in the 

z-domain from the s-domain transfer function. Assume a 

sample time of 𝑇 = 0.2 s and calculate the coefficients to a 

maximum of 3 decimal places. [4 marks] 
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2. This question concerns the velocity of a mass of 𝑚 = 4 kg, as shown in 

Figure Q2. The speed of the mass, 𝑣 (km/h), is controlled by an applied 

traction force, 𝐹 (kN), with a friction force of 𝑓 = 𝑏𝑣, where 𝑏 = 2 N/ms-1 

is the friction coefficient 

 

Figure Q2 

We are interested in the speed 𝑣, and the traction force input, 𝐹, which 

are related according to the differential equation: 

𝑣̇ +
𝑏

𝑚
𝑣 =

𝐹

𝑚
 

a) Obtain a difference equation relating the speed, 𝑣, to the traction 

force, 𝐹, assuming trapezoidal integration. Assume the sample time 

𝑇 = 0.5 s and calculate the coefficients to a maximum of 3 decimal 

places. [5 marks] 

b) For the sample time 𝑇 = 0.2 s, the difference equation of the system 

is   

𝑣𝑘 = 0.024𝐹𝑘 + 0.024𝐹𝑘−1 + 0.905𝑣𝑘−1 

Draw a block diagram of the digital filter that represents this 

difference equation [4 marks] 

c) Given that a suitable transfer function in the z-domain with the 

sample time 𝑇 = 0.2 s is: 

𝐺(𝑧) =
0.024𝑧 + 0.024

𝑧 − 0.905
 

i. Express this transfer function in terms of the backward shift 

operators (𝑧−1). [3 marks] 

ii. Obtain the z-transform expression for the unit pulse response 

and calculate the first 4 samples of the time response to a 

maximum of 3 decimal places. [7 marks] 
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d) Given the following continuous time (s-domain) transfer function of 

the system: 

𝑣(𝑠)

𝐹(𝑠)
=

0.25

𝑠 + 0.5
 

Which has a pole at 𝑠 = −0.5. Convert the pole to its exact 

equivalent in discrete time (z-domain) and mark it on a diagram of 

the complex z-plane. Show the unit circle on your diagram. [6 marks] 
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3. A robotics engineer has designed a PD controller for a servomotor with a 

first-order low pass filter, which has the following transfer function: 

𝐶(𝑠) =
6.78𝑠 + 2.37

𝑠 + 3.49
 

The specifications for the servomotor are: to achieve a rise time of less 

than 10 seconds, overshoot of less than 10%, and a steady state error of 

less than 2% (for a unit step), to have a phase margin of at least 45 

degrees, and a gain margin of at least 6dB. 

To test the design, the engineer produces a closed-loop step response 

for a 10-degree step change in its reference signal and a Bode plot, 

shown in Figures Q3(a) and Q3(b), comparing these with the response 

for 𝐶(𝑠) = 1 i.e. unity feedback. 

 

Figure Q3(a) 

a) Evaluate whether the unity feedback system and the PD controlled 

system meet the specifications, stating any specifications that are 

not met in each case. [5 marks] 
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Figure Q3(b) 

The designed PD compensator will be implemented on a digital 

microcontroller, so a discrete-time version is required 

b) Choose an appropriate sampling time 𝑇𝑠 and justify your choice. [4 marks] 

c) Apply the trapezoidal approximation to show that a suitable z-

domain transfer function to implement the controller is: [6 marks] 

𝐶(𝑧) =
(13.6 + 2.37𝑇𝑠)𝑧 − 11.2

(2 + 3.49𝑇𝑠)𝑧 + 3.49 𝑇𝑠 − 2
 

d) Derive a difference equation in a form that could be used to 

implement this controller when programming the microcontroller. [5 marks] 

e) Due to a bug in the microcontroller firmware, the sampling rate is 

reduced to 𝑓𝑠 = 0.2𝐻𝑧 when the controller is implemented. Explain 

the likely effect of this, considering each specification. [5 marks] 
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4.  

An automotive engineer is in the process of designing a controller for 

a cruise control system. At motorway speeds, an approximate 

transfer function of the vehicle considering throttle valve position 

𝑢(𝑡) as the control input and vehicle speed 𝑣(𝑡) as the output is: 

𝐺(𝑠) =
𝑉(𝑠)

𝑈(𝑠)
=

7.5

𝑠 + 0.04
 

The engineer considers implementing the cruise control system as a 

proportional control 𝐶(𝑧)  =  𝐾 at a sampling frequency of 𝑓𝑠 =

10 Hz. This proportional controller acts on the error 𝑒 between the 

measured 𝑣(𝑡) and a reference value 𝑣𝑟𝑒𝑓(𝑡) as shown in Figure 

Q4.  

 

Figure Q4 

a) Show that when using a Zero-Order Hold (ZOH) with a sample time 

𝑇𝑠, the vehicle behaves according to the equivalent z-domain 

transfer function: [7 marks] 

𝐺(𝑧) =
7.5

0.04
(

1 − 𝑒−0.04𝑇𝑠

𝑧 − 𝑒−0.04𝑇𝑠
) 

b) Show that with a sampling frequency of 𝑓𝑠 = 10 Hz, the system now 

behaves according to the approximate transfer function: [2 marks] 

𝐺(𝑧) =
0.749

𝑧 − 0.996
 

  

c) Show that the closed-loop transfer function from the reference input 

to the output is: [3 marks] 

𝑉(𝑧)

𝑉𝑟𝑒𝑓(𝑧)
=

0.749𝐾

𝑧 − 0.996 + 0.749𝐾
 

d) For what values of the proportional gain 𝐾 is the system stable? [4 marks] 
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e) Calculate the minimum value of K required to achieve a steady-

state error of less than 5% to a unit step in 𝑉𝑟𝑒𝑓(𝑧). [4 marks] 

After further testing, the engineer finds that this cruise controller 

works effectively if the vehicle is on a level surface but shows 

significant steady-state error on hills and slopes. The engineer 

considers correcting this problem by increasing the proportional 

gain 𝐾, while a colleague suggests implementing a PI controller 

instead. 

f) Which approach would you choose: a PI controller or a proportional 

controller with an increased gain?  

For each one, state if it will reduce the steady-state error on slopes 

as intended, and any possible disadvantages. [5 marks] 
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Useful information (control systems) 

Selected Laplace and z-transforms 

t-domain (t>0) s-domain z-domain  
(with sample time 𝑇) 

Unit step 
1

𝑠
 

𝑧

𝑧 − 1
 

𝑒−𝑎𝑡 
1

𝑠 + 𝑎
 

𝑧

𝑧 − 𝑒−𝑎𝑇
 

sin 𝜔𝑡 
𝜔

𝑠2 + 𝜔2
 

𝑧 sin (𝜔𝑇)

𝑧2 − 2𝑧 cos(𝜔𝑇) + 1
 

cos 𝜔𝑡 
𝑠

𝑠2 + 𝜔2
 

𝑧(𝑧 − cos(𝜔𝑇))

𝑧2 − 2𝑧 cos(𝜔𝑇) + 1
 

𝑒−𝑎𝑡  sin 𝜔𝑡 
𝜔

(𝑠 + 𝑎)2 + 𝜔2
 𝑧 𝑒−𝑎𝑇 sin (𝜔𝑇)

𝑧2 − 2𝑧 𝑒−𝑎𝑇 cos(𝜔𝑇) + 𝑒−2𝑎𝑇
 

𝑒−𝑎𝑡  cos 𝜔𝑡 
𝑠 + 𝑎

(𝑠 + 𝑎)2 + 𝜔2
 

𝑧(𝑧 − 𝑒−𝑎𝑇 cos(𝜔𝑇))

𝑧2 − 2𝑧 𝑒−𝑎𝑇 cos(𝜔𝑇) + 𝑒−2𝑎𝑇
 

Some results about Laplace and z-transforms 

𝑓(𝑡) 𝐹(𝑠) 𝐹(𝑧) 

𝑓(𝑡 − 𝑇) 𝑒−𝑇𝑠 𝐹(𝑠) 𝑧−1 𝐹(𝑧) 

𝑒−𝑎𝑡 𝑓(𝑡) 𝐹(𝑠 + 𝑎) 𝐹(𝑧/𝑒−𝑎) 

𝑓′(𝑡) 𝑠𝐹(𝑠) − 𝑓(0) ---- 

lim
𝑡→∞

𝑓(𝑡) lim
𝑠→0

 {𝑠 𝐹(𝑠)} lim
𝑧→1

 {(𝑧 − 1) 𝐹(𝑧)} 

Trapezoidal/Tustin/Bilinear 
approximation 

𝑠 
2

𝑇
(

𝑧 − 1

𝑧 + 1
) 

Pulse transfer function with 
Zero Order Hold 

𝐺(𝑠) (1 − 𝑧−1)𝑍 {
𝐺(𝑠)

𝑠
}

𝑡=𝑘𝑇
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Step response of second-order systems - For systems well approximated by 
𝐴𝜔0

2

𝑠2+2𝜁𝜔0𝑠+𝜔0
2

Percentage overshoot: 

𝑂% = 100𝑒
− 

𝜋𝜁

√1−𝜁2
 

Settling time to p% of steady-state: 

𝑇𝑠 =
ln(100/𝑝)

𝜁𝜔0
 

Peak time:   

𝑇𝑝 =
𝜋

𝜔0√1 − 𝜁2
 

Rise time: 

𝑇𝑟 ≈
2

𝜔0
 

 

With phase margin 𝜙𝑃𝑀 in degrees, 𝜁 ≈ 𝜙𝑃𝑀/100 for 𝜙𝑃𝑀 < 60𝑜, and 𝜙𝑃𝑀 = 65𝑜 gives 𝜁 ≈ 0.7 

Common SISO compensator types (PID and related controllers) 

PID controller:   

𝐶𝑝𝑖𝑑(𝑠) = 𝐾 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) 

PI controller:   

𝐶𝑝𝑖(𝑠) = 𝐾 (1 +
1

𝑇𝑖𝑠
) 

PD controller:   

𝐶𝑝𝑑(𝑠) = 𝐾(1 + 𝑇𝑑𝑠) 

Frequency-domain design formulae for PID-type controllers 

(where 𝐺𝐶, 𝜙𝐶 are required controller gain and phase at a chosen design frequency 𝜔𝑑) 

PI controller:   

𝑇𝑖 =
1

𝜔𝑑 tan(−𝜙𝐶)
 

PD controller:   

𝑇𝑑 =
tan 𝜙𝐶

𝜔𝑑
 

PID controller: 

tan 𝜙𝐶 = 𝑇𝑑𝜔𝑑 −
1

𝑇𝑖𝜔𝑑
 

Controller gain (all cases): 

𝐾 =
𝐺𝑐

√1 + tan2 𝜙𝐶

 

 

 

 

 

 

 



 

 Page 11 of 12 /continued 

Additional Fomulae 

          Bilinear transform:           s ⇒
2

T
∙

z−1

z+1
                 z ⇒

1+sT/2

1−sT/2
                                     

            Precise link:                     z ⇔  esT                        s ⟺  
1

T
[ln z]                           

            Trapezoidal integration:     𝑦𝑘 = 𝑦𝑘−1 +
𝑇

2
(𝑢𝑘 + 𝑢𝑘−1) 
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