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COMPUTATIONAL FLUID DYNAMICS 1 

23WSC802 

 
Semester 2 In-Person Exam paper 

 

This examination is to take place in-person at a central University venue under exam 

conditions. The standard length of time for this paper is 2 hours. 

 

You will not be able to leave the exam hall for the first 30 or final 15 minutes of your exam. 

Your invigilator will collect your exam paper when you have finished. 

 
 

Help during the exam 

 

Invigilators are not able to answer queries about the content of your exam paper. Instead, 

please make a note of your query in your answer script to be considered during the 

marking process. 

 

If you feel unwell, please raise your hand so that an invigilator can assist you. 
 

Answer ALL THREE questions. 

All questions carry equal marks. 

You may take TWO A4 sides of your own notes into the examination venue. 

Use of a calculator is permitted - It must comply with the University’s Calculator Policy for 

In-Person exams, in particular that it must not be able to transmit or receive information 

(e.g. mobile devices and smart watches are not allowed). 

A set of useful equations is attached at the end of this paper.  
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1. Conductive heat transfer in problems with spherical symmetry, constant thermal 

conductivity 𝑘 and constant internal heat generation 𝐺 is governed by the following 

one-dimensional equation:               
𝑘

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑𝑇

𝑑𝑟
) + 𝐺 = 0 

 

Consider a sphere with a radius of 𝑅𝐵 = 6 mm with thermal conductivity  

𝑘 = 300 W.m-1.K-1
 and rate of internal heat generation per unit volume  

𝐺 =   1010
 W.m-3. The boundary temperature 𝑇𝐵 at radius 𝑅𝐵  is kept at a 

constant value of 300 K. 

 

a) Use the finite volume method on a uniform grid as sketched in 

Figure Q.1 to estimate the temperatures at nodes 1, 2 and 3. (Hint: 

multiply the governing equation by  𝑟2/𝑘 before carrying out the 

integration over a one-dimensional control volume between limits    

𝑟𝑤 and  𝑟𝑒 ). [16 marks] 

b) Estimate the heat flux escaping from the sphere at radius  𝑟 =  𝑅𝐵.  [4 marks] 
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2. Shown in Figure Q.2 is a two-dimensional cross-section of a long beam. Initially, the 

entire beam is at a temperature of 200 °C. Suddenly (𝑡 > 0), heat is generated in this 

beam at a rate of 20 kW/m3, the left bottom surface of this beam is brought to a 

temperature of 400 °C while the right bottom surface is lowered to a temperature of 

100°C. At the same time, the top surface is exposed to convective heat transfer with 

a convective heat transfer coefficient of ℎ = 200 W/(m2.ºC), and the ambient 

temperature is 𝑇∞ = 10°C. The properties are: thermal conductivity 𝑘 = 200 W/(m.°C) 

and 𝜌𝑐 = 500 × 103 J/(m3.°C). 

Two-dimensional transient heat transfer in this situation is governed by: 

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝑔 = 𝜌𝑐

𝜕𝑇

𝜕𝑡
 

A simple two-dimensional grid stencil representing the central plane of 

the beam as shown in Figure Q.2 may be used to formulate discretised 

equations to calculate transient temperature distribution in this situation. 

The grid spacing Δ𝑥 = Δ𝑦 = 0.1 m. 

a) Write the discretised form of the governing equation for a general 

node using the explicit method and provide expressions for its 

coefficients. [2 marks] 

b) Using the grid as shown in the figure, incorporate appropriate 

boundary conditions after 𝑡 > 0 and write discretised equations at 

each node using the explicit method. [12 marks] 

c) Based on the equations obtained in (b) determine a suitable time 

step to calculate the transient temperature in this beam while the 

heat generation is maintained at the same initial rate. [2 marks] 

d) Using the equations obtained in (b) and a suitable time step, 

calculate the temperature distribution at time 𝑡 = 10 s. [4 marks] 
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3. Shown in Figure Q.3 is part of a grid used for a two-dimensional CFD 

flow calculation. The velocities are calculated at staggered locations as 

shown. As part of this problem, a transport equation for a scalar variable 

𝜙 is solved. Its transport is governed by 

 

∂(𝜌𝑢𝜙)

∂𝑥
+

∂(𝜌𝑣𝜙)

∂𝑦
=

∂

∂𝑥
(Γ

∂𝜙

∂𝑥
) +

∂

∂𝑦
(Γ

∂𝜙

∂𝑦
) 

 

a) Write the discretised form of the above equation for a scalar cell. 

   [2 marks] 

The velocity values 𝑢 and 𝑣 shown in Figure Q.3 are those obtained 

at an intermediate stage of the iterative process. Consider a scalar 

cell at point P and calculate the coefficients of the discretisation 

equation for 𝜙 using: 

b) The central differencing scheme [3 marks] 

c) the upwind differencing scheme [3 marks] 

d) the hybrid differencing scheme [4 marks] 

e) the QUICK differencing scheme [4 marks] 

f) by making references to the coefficients calculated above, briefly 

comment on the suitability of each scheme. [4 marks] 

Data are: Density 𝜌 = 1000 kg/m3, Γ = 0.5 kg.m-1.s-1 

 

H. Versteeg 

W. Malalasekera 
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Figure Q.1 
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Figure Q.2 
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Figure Q.3 
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USEFUL EQUATIONS 

Note: All equations are in standard notations used during the lecture course. 

Steady State One-dimensional Diffusion Equation is: 

 0=+







 S

dx

d

dx

d 
 

where  is the diffusion coefficient, S is the source term. 

Discretised form of the one-dimensional diffusion equation is: 

  

where 

a
W
 a

E
 a

P
 

  

 

Boundary conditions can be introduced by cutting links with the appropriate face(s) and modifying 

the source terms. Equivalent expressions for 2-D and 3-D can be wrriten based on 1-D expressions. 

In conduction problems  is thermal conductivity k. 

Steady State One-Dimensional Convection and Diffusion Equation 

In the absence of sources, steady convection and diffusion of a property  in a given one-dimensional  

flow field u is governed by: 

 







=

dx

d

dx

d
u

dx

d 
 )(  

The flow must also satisfy continuity 0
)(
=

dx

ud 
 

Discretised form of one-dimensional steady state convection diffusion equation is: 

 EEWWPP aaa  +=   

 

 with  ( )weEWP FFaaa −++=  

 eeww uAFuAF )(,)(  ==    

   e

PE

e
ew

WP

w
w A

x
DA

x
D




=


= ,  

Coefficients depends on the discretisation scheme used. 

a a a SP P W W E E u  = + +

w

WP

w
x

A


e

PE

e
x

A


a a SW E P+ −
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If source terms are present in the governing equation they could be accommodated using the 

standard practice. 

 

The neighbour coefficients of the discretised equation for some common schemes are: 

Scheme a
W a

E 

Central differencing   

Upwind differencing ( )0,max ww FD +  ( )ee FD −+ ,0max  

Hybrid differencing ( ) 0,2,max www FDF +  ( ) 0,2,max eee FDF −−  

Power law 

x

u

D

F
Pe






==  

( )  ( )0,max1.01,0max
5

www FPeD +−  

 

( )  ( )0,max1.01,0max
5

eee FPeD −+−  

Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions. 

 

The discretised equation of the one-dimensional steady state convection diffusion equation using the 

standard QUICK scheme at a general internal node point is: 

  

where ( )weEEWWEWP FFaaaaa −++++=  

The neighbour coefficients of the standard QUICK scheme in 1-D are: 

 Standard QUICK 

a
W 

 

a
WW 

 

a
E 

 

a
EE 

ee F)1(
8

1
−  

with  

  

Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions. 

 

 

 

D Fw w+ 2 D Fe e− 2

a a a a aP P W W E E WW WW EE EE    = + + +

D F F Fw w w e e w w+ + + −
6

8

1

8

3

8
1  ( )

−
1

8
w wF

D F F Fe e e e e w w− − − − −
3

8

6

8
1

1

8
1  ( ) ( )

 w w e eF F=  = 1 0 1 0 for  and  for 

 w w e eF F=  = 0 0 0 0 for  and  for 
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The SIMPLE algorithm 

Pressure correction p' is the difference between correct pressure field p and the guessed pressure 

field p*, so that  

 '* ppp +=   

Velocity corrections in two-dimensions u'  and  v'  relate to the correct velocities u and v when the 

guessed velocities u* and v*  as 

 '* uuu +=   

 '* vvv +=  

Velocity corrections are obtained from pressure corrections field using 

 )''( ,.1,
*
,, JIJIJiJiJi ppduu −+= −  

 )''( ,1,,
*
,, JIJIjIjIjI ppdvv −+= −  

In a two-dimensional flow the continuity equation is: 

 ( ) ( ) 0=+ v
y

u
x










 

In a two-dimensional grid using west (W), east (E), south (S) and north (N) notations, the pressure 

correction equation derived from the continuity equation takes the form: 

  

where  ( )wW dAa =`   ;  ( )eE dAa =` ;  ( )sS dAa =`   ; ( )nN dAa =`  

 NSEWP aaaaa +++=  

  

 

One-Dimensional Unsteady Heat Conduction is governed by: 

 S
x

T
k

xt

T
c +








=












  

Discretised equation using the explicit scheme for one-dimensional unsteady heat conduction 

is  

   u

o

PpEW

o

P

o

EE

o

WWPP STSaaaTaTaTa +−+−++= )(  (8.1) 

where 
o

PP aa =  

bpapapapapa NNSSEEWWPP
++++= '''''

( ) ( ) ( ) ( )nsew AvAvAuAub ****  −+−=
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and 
t

x
cao

P



=   

 

a
W a

E 

WP

w

x

k


 

PE

e

x

k


 

Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions. 

 

Discretised equation using the fully implicit scheme for one-dimensional unsteady heat 

conduction is  

 u

o

P

o

PEEWWPP STaTaTaTa +++=   

where pEW

o

PP Saaaa −++=  

and 
t

x
cao

P



=   

with 

a
W a

E 

WP

w

x

k


 

PE

e

x

k


 

Equivalent expressions for 2-D and 3-D can be wrriten based on 1-D expressions. 

Tri-Diagonal Matrix Algorithms (TDMA) for the Solution of Linear Equations 

For a system of equations that has a tri-diagonal form any single equation may be written in the 

form: 

 jjjjjjj CD =−+− +− 11   

The solution can be obtained from the recurrence relationships: 

 jjjj CA += +1  

where 
1−−

=
jjj

j

j
AD

A



 

 
1

1

−

−

−

+
=

jjj

jjj

j
AD

CC
C




 

At the boundary points j = 1 and j = n+1 the values for A and C' are: 

 111  and  0 == CA   and 111  and  0 +++ == nnn CA   


