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Semester 2 In-Person Exam paper

This examination is to take place in-person at a central University venue under exam
conditions. The standard length of time for this paper is 2 hours.

You will not be able to leave the exam hall for the first 30 or final 15 minutes of your exam.
Your invigilator will collect your exam paper when you have finished.

Help during the exam

Invigilators are not able to answer queries about the content of your exam paper. Instead,
please make a note of your query in your answer script to be considered during the
marking process.

If you feel unwell, please raise your hand so that an invigilator can assist you.

Answer ALL THREE questions.
All questions carry equal marks.
You may take TWO A4 sides of your own notes into the examination venue.

Use of a calculator is permitted - It must comply with the University’s Calculator Policy for
In-Person exams, in particular that it must not be able to transmit or receive information
(e.g. mobile devices and smart watches are not allowed).

A set of useful equations is attached at the end of this paper.
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Conductive heat transfer in problems with spherical symmetry, constant thermal
conductivity k and constant internal heat generation G is governed by the following
one-dimensional equation:

k d ( , dT) e—0
— — ’r’ — _—
r2dr dr

Consider a sphere with a radius of Rz = 6 mm with thermal conductivity
k = 300 W.mt.K-tand rate of internal heat generation per unit volume

G = 10°W.m=3. The boundary temperature Ty at radius Ry is kept at a
constant value of 300 K.

a) Use the finite volume method on a uniform grid as sketched in
Figure Q.1 to estimate the temperatures at nodes 1, 2 and 3. (Hint:
multiply the governing equation by r2/k before carrying out the
integration over a one-dimensional control volume between limits
r, and r, ). [16 marks]

b) Estimate the heat flux escaping from the sphere at radius r = Rj. [4 marks]
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Shown in Figure Q.2 is a two-dimensional cross-section of a long beam. Initially, the
entire beam is at a temperature of 200 °C. Suddenly (t > 0), heat is generated in this
beam at a rate of 20 kW/m3, the left bottom surface of this beam is brought to a
temperature of 400 °C while the right bottom surface is lowered to a temperature of
100°C. At the same time, the top surface is exposed to convective heat transfer with
a convective heat transfer coefficient of h = 200 W/(m?.°C), and the ambient
temperature is T.. = 10°C. The properties are: thermal conductivity k = 200 W/(m.°C)
and pc = 500 x 103 J/(m3.°C).

Two-dimensional transient heat transfer in this situation is governed by:

a(kaT)+a(kaT)+ B aT
ax\“ox) Tay\“ay) "I T PGt

A simple two-dimensional grid stencil representing the central plane of
the beam as shown in Figure Q.2 may be used to formulate discretised
equations to calculate transient temperature distribution in this situation.
The grid spacing Ax = Ay = 0.1 m.

a) Write the discretised form of the governing equation for a general
node using the explicit method and provide expressions for its
coefficients. [2 marks]

b) Using the grid as shown in the figure, incorporate appropriate
boundary conditions after t > 0 and write discretised equations at
each node using the explicit method. [12 marks]

c) Based on the equations obtained in (b) determine a suitable time
step to calculate the transient temperature in this beam while the
heat generation is maintained at the same initial rate. [2 marks]

d) Using the equations obtained in (b) and a suitable time step,
calculate the temperature distribution at time t = 10 s. [4 marks]
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Shown in Figure Q.3 is part of a grid used for a two-dimensional CFD
flow calculation. The velocities are calculated at staggered locations as
shown. As part of this problem, a transport equation for a scalar variable
¢ is solved. Its transport is governed by

) o) 9 (,08) , 0 (10

ox dy  ox\ ox/)  dy @)

a) Write the discretised form of the above equation for a scalar cell.

[2 marks]
The velocity values u and v shown in Figure Q.3 are those obtained
at an intermediate stage of the iterative process. Consider a scalar
cell at point P and calculate the coefficients of the discretisation
equation for ¢ using:
b)  The central differencing scheme [3 marks]
c) the upwind differencing scheme [3 marks]
d) the hybrid differencing scheme [4 marks]
e) the QUICK differencing scheme [4 marks]
f) by making references to the coefficients calculated above, briefly
comment on the suitability of each scheme. [4 marks]
Data are: Density p = 1000 kg/m3, T' = 0.5 kg.m.s?
H. Versteeg

W. Malalasekera
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Figure Q.1
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Figure Q.2
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0.01m

All velocity values marked are in m/s, Ax = Ay
Figure Q.3
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USEFUL EQUATIONS

Note: All equations are in standard notations used during the lecture course.

Steady State One-dimensional Diffusion Equation is:

i(rd—qﬁj+ S=0
dx\ dx

where T is the diffusion coefficient, S is the source term.

Discretised form of the one-dimensional diffusion equation is:

|aP¢P = Ay Py + A + Su|

where

aW aE aP
rW AN Fe Ae aW +aE _SP
5XWP 5XPE

Boundary conditions can be introduced by cutting links with the appropriate face(s) and modifying
the source terms. Equivalent expressions for 2-D and 3-D can be wrriten based on 1-D expressions.

In conduction problems T is thermal conductivity k.

Steady State One-Dimensional Convection and Diffusion Equation
In the absence of sources, steady convection and diffusion of a property ¢ in a given one-dimensional

flow field u is governed by:

d _d(pd¢
dx (pug) = dx [F dxj

The flow must also satisfy continuity % =0
X

Discretised form of one-dimensional steady state convection diffusion equation is:
apfp =y Ay +acPe

with ap=ay +ag +(Fe B Fw)
F, = (puA),, F. =(puA),
T I
D,=—"A,  D=_—%A
Ky Ko

Coefficients depends on the discretisation scheme used.
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If source terms are present in the governing equation they could be accommodated using the

standard practice.

The neighbour coefficients of the discretised equation for some common schemes are:

Scheme a, ag

Central differencing D, +F,/2 D, -F,./2
Upwind differencing | D, +max(F,.0) D, +max(0,~F, )
Hybrid differencing | max[F,(D, +F,/2)0] max[-F,, (D, —F, /2)0]
Power law D, max[o, (L-0.1Pe,|’ J+max(FW 0) D, max[o, (L-0.1Pe,| Pmax(— F,.0)

LN

D I'/&

Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions.

The discretised equation of the one-dimensional steady state convection diffusion equation using the

standard QUICK scheme at a general internal node point is:

|aP¢P =8y Py + 8 P + Ay Py + aEE¢EE|

where dp=3ay, +ag Ty T a +(Fe - FW)

The neighbour coefficients of the standard QUICK scheme in 1-D are:

Standard QUICK
ay, Dw+gaWFW+%aeFe+§(l—aW)FW
S —%aWFW
a De—gaeFe—g(l—ae)Fe—%(l—aW)FW
Qe %(1—o:e)Fe

with  « 1forF, >0and e, = 1forF, > 0

w

a, =0forF, <O0Oandea, = 0 forF, <O

w

Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions.
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The SIMPLE algorithm

Pressure correction p' is the difference between correct pressure field p and the guessed pressure

field p*, so that

p=p*+p

Velocity corrections in two-dimensions u' and V' relate to the correct velocities u and v when the
guessed velocities u* and v* as

Velocity corrections are obtained from pressure corrections field using

Ui, =ui*,J +di,J (p:_u - p;,J)

Vi :VT,j +d|,j(p:,J—l_ p:,J)

In a two-dimensional flow the continuity equation is:

0 o
g(PU)““E(PV):O

In a two-dimensional grid using west (W), east (E), south (S) and north (N) notations, the pressure

correction equation derived from the continuity equation takes the form:
8, Pp =8y Py + 8¢ Pe + a5 Ps +ay Py +b’
where aW = (pdA)w , a-E‘ = (pdA)e , aS‘ = (pdA)s , aN‘ = (pdA)n
a, =a, +ag +a +ay,

b’ = (pu’A),~(ou A), + (v A) (v A),

One-Dimensional Unsteady Heat Conduction is governed by:

pcﬂzé(kﬂJ+S
a X\ &

Discretised equation using the explicit scheme for one-dimensional unsteady heat conduction

is

aT, =a,Ty +a:T¢ +[a§ —(ay +a¢ —Sp)}I'F? +S, (8.1)

where ap =4ap
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o AX

d ap =pC—

an PN
a, a
kW ke
Kyp Kpe

Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions.

Discretised equation using the fully implicit scheme for one-dimensional unsteady heat

conduction is

a,T, =a,T, +a:Tz +apT, +S,
where ap =ap +a, +a; —S,
and as = pcg
i At
with
a, a,
kW ke
K Koe

Equivalent expressions for 2-D and 3-D can be wrriten based on 1-D expressions.
Tri-Diagonal Matrix Algorithms (TDMA) for the Solution of Linear Equations
For a system of equations that has a tri-diagonal form any single equation may be written in the
form:

~ B¢+ Digy —a;4;, =C,

The solution can be obtained from the recurrence relationships:

¢j :Aj¢j+1+C;
where A %
D -B;A
, _ BiCi+C
' D -BiAL

At the boundary points j = 1 and j = n+1 the values for A and C' are:
A =0andC/=¢ and A, =0andC/,, =4, ,

nl T
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