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Computational Fluid Dynamics 1 

24WSC802 

 
Semester 2, 2024-25 In-Person Exam paper 

 

This examination is to take place in-person at a central University venue under exam 
conditions. The standard length of time for this paper is 2 hours. 
 

You will not be able to leave the exam hall for the first 30 or final 15 minutes of your exam. 
Your invigilator will collect your exam paper when you have finished. 
 

 

Help during the exam 
 

Invigilators are not able to answer queries about the content of your exam paper. Instead, 
please make a note of your query in your answer script to be considered during the 

marking process. 
 

If you feel unwell, please raise your hand so that an invigilator can assist you. 
 

Answer ALL THREE questions. 

All questions carry equal marks. 

You may take TWO A4 sides of your own notes into the examination venue. 

Use of a calculator is permitted - It must comply with the University’s Calculator Policy for 
In-Person exams, in particular that it must not be able to transmit or receive information 

(e.g. mobile devices and smart watches are not allowed). 

A range of formulae likely to be of benefit in the solution of these questions is provided at 
the rear of the paper. 
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1. Fully-developed, laminar flow in a circular pipe satisfies the following axisymmetric 
momentum equation in cylindrical coordinates: 
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where V = axial fluid velocity, µ = dynamic viscosity of fluid,  
dP/dz = axial pressure gradient, r = local radius, z = axial coordinate. 

 
The radius of the pipe is R = 6 mm . The fluid is glycerol with 

µ = 1.5  kg.m-1.s-1. The pressure gradient dP/dz = -3104 Pa.m-1. 

 
a) Use the finite volume method in conjunction with a uniform radial grid of three 

control volumes between r = 0 and r = R to estimate the fluid velocity at the 
nodes of the control volumes. (Hint: you may find it helpful to multiply both 
sides of the axisymmetric momentum equation by r /µ prior to carrying out a 1-D 
control volume integration in the radial direction).      
                                                                                          [15 marks] 

b) Estimate the wall shear stress. Calculate the shear forces on a 
section of pipe with length of 1 m and demonstrate global 
conservation of  z - momentum.  [5 marks] 

 

2. Shown in Figure Q.2 is a two-dimensional cross section of a long beam. Heat is 
generated in this beam at a rate of 10 kW/m3. The bottom surface of this beam is 
kept at a temperature of 400 °C while the top surface is at a temperature of  200°C. 
All other surfaces are exposed to convective heat transfer  with a convective heat 
transfer coefficient of ℎ ൌ 200 W/(m2.ºC), and the ambient temperature is 𝑇∞ ൌ 10°C. 
The thermal conductivity of the material is 200 W/(m.°C).  In usual notations 
conductive heat transfer in this situation is governed by: 
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The grid shown in Figure Q.2 may be used to formulate discretised equations to 
calculate temperature distribution in this beam cross-section. Two-dimensional grid 
dimensions are 𝛥𝑥 ൌ 𝛥𝑦 = 0.1 m as shown in the Figure Q.2. The length of the beam 
may be considered to be infinitely long. 

a) Write down the discretised form of the above equation for a general 
node P and provide expressions for its coefficients.  [2 marks] 

b) By considering symmetry, show how the general discretised 
equation could be modified at required nodes to obtain a set of 
equations to solve for temperature distribution. [9 marks] 

c) Show how the set of equations could be arranged to use the TDMA 
method to solve for the temperature distribution. [2 marks] 

d) Using the set of equations obtained in (c), tabulate the coefficients 
required for the application of the TDMA method in the form of 
Table Q.2. [4 marks] 

e) Using the TDMA method solve for the temperature distribution at 
given nodes. [3 marks] 

Attach Table Q.2 to the answer book. 

TDMA method 

For a set of equations of the form 

െ𝛽௝𝜙௝ିଵ ൅ 𝐷௝𝜙௝ െ 𝛼௝𝜙௝ାଵ ൌ 𝐶௝ 

where 𝛽௝ , 𝛼௝ and 𝐷௝are coefficients, 𝑗 ൌ 2,3,4 … . . ሺ𝑛 െ 1ሻ are points along 

a line. 

𝜙௝ can be obtained from the recurrence formulae: 

𝜙௝ ൌ 𝐴௝𝜙௝ାଵ ൅ 𝐶௝
′  

𝐴௝ ൌ
𝛼௝

൫𝐷௝ െ 𝛽௝𝐴௝ିଵ൯
 

𝐶௝
′ ൌ

൫𝛽௝𝐶௝ିଵ
′ ൅ 𝐶௝൯

൫𝐷௝ െ 𝛽௝𝐴௝ିଵ൯
;   𝐴ଵ ൌ 0  and  𝐶ଵ

ᇱ ൌ 𝜙ଵ 
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3. In the absence of sources, steady one-dimensional convection and 
diffusion of a property 𝜙 in a given flow field 𝑢 is governed by the 
transport equation: 

𝑑
𝑑𝑥
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A one-dimensional uniform grid with nodal spacing 𝛥𝑥 is used to 
discretise the above equation. A part of the grid is shown in Figure Q.3. 
The notation W and E are used to identify the west and east nodes of a 
general node P. The west and east cell faces are denoted by w and e, 
respectively. WW and EE may be used to identify the nodes two steps to 
the west and east of P, respectively. In the discretisation scheme known 
as the Linear Upwind Differencing (LUD), the cell face values are 
obtained by linear extrapolation from the two closest upstream 
neighboring nodes, i.e., 

 

 

 

 

a) Use the above scheme for convective terms and central differencing 
for diffusion terms to derive the discretised form of the one-
dimensional convection-diffusion equation given above for the case 
𝑢 ൐ 0 everywhere. Using standard notation, provide expressions for 
its coefficients.You may use 𝐹 ൌ 𝜌𝑢 and D = Γ/𝛥𝑥 to simplify your 
expressions.  [10 marks] 

b) Rearrange the equation obtained in part (a) in the form 

  𝑎௉ ൌ ∑𝑎௡௕𝜙௡௕ ൅ 𝑆௨ where nb stands for neighbour values and 
verify that  𝑎௉ ൌ ∑𝑎௡௕ ൅ 𝛼  where 𝛼 is the continuity imbalance. [2 marks] 

If the flow field is given as 𝑢 ൌ 2 m/s and properties are given as 
𝜌 ൌ  1.0 kg/m3,  Γ ൌ 0.1  kg/(m.s), and grid spacing of the grid is 
Δ𝑥 ൌ  0.1 m. 

c) Calculate the coefficients of the discretisation equation at a general 
node using (1) the scheme derived in part (a) and (2) the standard 
upwind scheme. [4 marks] 

d) Comment on the properties of the two schemes, Linear Upwind 
Differencing and standard Upwind, making references to the values 
obtained in (c). [4 marks] 
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Figure Q.2 
 

 

 
 

Figure Q.3 
 

H K Versteeg 
W Malalasekera 

 

 

 



 

 Page 6 of 10 /continued 

Attach This to the Answer Book. 

ID Number of the candidate: ___________________________ 

 

 

 

TABLE Q.2 

 

Point 𝛽௝ 𝐷௝ 𝛼௝ 𝐶௝ 𝐴௝ 𝐶௝
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USEFUL EQUATIONS 

Note: All equations are in standard notations used during the lecture course. 

Steady State One-dimensional Diffusion Equation is: 

 0





 S

dx

d

dx

d 
 

where  is the diffusion coefficient, S is the source term. 

Discretised form of the one-dimensional diffusion equation is: 

  

where 
a

W
 a

E
 a

P
 

  
 

Boundary conditions can be introduced by cutting links with the appropriate face(s) and modifying 

the source terms. Equivalent expressions for 2-D and 3-D can be wrriten based on 1-D expressions. 

In conduction problems  is thermal conductivity k. 

Steady State One-Dimensional Convection and Diffusion Equation 

In the absence of sources, steady convection and diffusion of a property  in a given one-dimensional  

flow field u is governed by: 

 







dx

d

dx

d
u

dx

d  )(  

The flow must also satisfy continuity 0
)(


dx

ud 
 

Discretised form of one-dimensional steady state convection diffusion equation is: 

 EEWWPP aaa     

 
 with   weEWP FFaaa   

 eeww uAFuAF )(,)(      

   e
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e
ew
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w
w A

x
DA

x
D






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Coefficients depends on the discretisation scheme used. 

a a a SP P W W E E u    
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A
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If source terms are present in the governing equation they could be accommodated using the 

standard practice. 

 

The neighbour coefficients of the discretised equation for some common schemes are: 

Scheme aW aE 

Central differencing   

Upwind differencing  0,max ww FD    ee FD  ,0max  

Hybrid differencing   0,2,max www FDF     0,2,max eee FDF   

Power law 

x

u

D

F
Pe





  

    0,max1.01,0max
5

www FPeD   

 

    0,max1.01,0max
5

eee FPeD   

Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions. 

 

The discretised equation of the one-dimensional steady state convection diffusion equation using the 

standard QUICK scheme at a general internal node point is: 

  

where  weEEWWEWP FFaaaaa   

The neighbour coefficients of the standard QUICK scheme in 1-D are: 

 Standard QUICK 

aW 
 

aWW 
 

aE 
 

aEE 
ee F)1(

8

1   

with  

  

Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions. 

 

 

 

D Fw w 2 D Fe e 2

a a a a aP P W W E E WW WW EE EE       

D F F Fw w w e e w w   
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8
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
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D F F Fe e e e e w w    
3
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8
1

1

8
1  ( ) ( )

 w w e eF F   1 0 1 0 for  and  for 

 w w e eF F   0 0 0 0 for  and  for 
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The SIMPLE algorithm 

Pressure correction p' is the difference between correct pressure field p and the guessed pressure 

field p*, so that  

 '* ppp    

Velocity corrections in two-dimensions u'  and  v'  relate to the correct velocities u and v when the 

guessed velocities u* and v*  as 

 '* uuu    

 '* vvv   

Velocity corrections are obtained from pressure corrections field using 

 )''( ,.1,
*
,, JIJIJiJiJi ppduu    

 )''( ,1,,
*
,, JIJIjIjIjI ppdvv    

In a two-dimensional flow the continuity equation is: 

     0 v
y

u
x








 

In a two-dimensional grid using west (W), east (E), south (S) and north (N) notations, the pressure 

correction equation derived from the continuity equation takes the form: 

  

where   wW dAa `   ;   eE dAa ` ;   sS dAa `   ;  nN dAa `  

 NSEWP aaaaa   

  

 

One-Dimensional Unsteady Heat Conduction is governed by: 
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x

T
k
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T
c 





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






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Discretised equation using the explicit scheme for one-dimensional unsteady heat conduction 

is  

   u
o

PpEW
o
P

o
EE

o
WWPP STSaaaTaTaTa  )(  (8.1) 

where o
PP aa   

bpapapapapa NNSSEEWWPP  '''''

       nsew AvAvAuAub ****  
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and 
t
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Equivalent expressions for 2-D and 3-D can be written based on 1-D expressions. 

 

Discretised equation using the fully implicit scheme for one-dimensional unsteady heat 

conduction is  

 u
o

P
o
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where pEW
o
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Equivalent expressions for 2-D and 3-D can be wrriten based on 1-D expressions. 

Tri-Diagonal Matrix Algorithms (TDMA) for the Solution of Linear Equations 

For a system of equations that has a tri-diagonal form any single single equation may be written in 

the form: 

 jjjjjjj CD   11   

The solution can be obtained from the recurrence relationships: 

 jjjj CA  1  

where 
1


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j
j AD

A


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1










jjj

jjj
j AD
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C




 

At the boundary points j = 1 and j = n+1 the values for A and C' are: 

 111  and  0  CA   and 111  and  0   nnn CA   


