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 1. Taylor Series
 

 
If a function f(x) is differentiable up to nth order in some neighbourhood of a point x = a,
then in the neighbourhood, the function can be represented by a power series in (x - a).

For many functions the remainder term Rn → 0 as n → ∞, and so we can write
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This series expansion is known as the Taylor series.  For the case of a = 0 it is known as
the Maclaurin's series.

Some important series easily derived are for the exponential, cosine and sine functions.
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Series expansions are widely used in engineering to provide approximations to functions.
Sufficient accuracy is often achieved by taking just the first two terms of the series.  If
(x - a) < < 1 then higher powers will contribute little.

Say we wish to express the value of a function for small displacements h from an operating
point a.  Then h = x - a and equation (1.1) becomes

Taking just the first two terms (sometimes referred to as linearisation) gives
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If we take as an example f(x) = xn, then

and it is clear that all powers of h greater than 1 have been discarded.  Provided h < < 1
such approximations are reasonably accurate.
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