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 5. Fourier Transform and Spectral Density Functions
 

 
Harmonic functions (written as eiωt or cos (ωt)) are attractive from an analytical point of
view for a number of reasons: they are straightforward to differentiate, integrate and
multiply; moduli are easily evaluated and each contains only one frequency.  The last
property will be found to be useful in the context of analysing systems which are
characterised by a fundamental (resonance) frequency.  Complexity can be dealt with
through superposition.

Technically, the harmonic functions can be shown to the mutually orthogonal and complete
(any reasonable function can be expressed as a linear combination of them).

If the period of f(t) is T, then mutual orthogonality means

If we take f(t) = cos (2πnt/T) with integer n, it can be shown to be orthogonal by integrating
over the range (-T/2, T/2).

Since cos (2πnt/T) is an even function, linear combinations will always be even.

A more general set of functions is then required to give completeness.  As a function can be
expressed as the sum of an even and an odd part, the suggested set of functions is:

for integers n and m.

It is straightforward to show that the orthogonal property still applies.

A particular linear combination of the above set (which also has the desired properties) is

This is attractive in that it can be written as simply exp (i 2πnt/T).

A Fourier series is an expansion of a function in terms of its Fourier components as
suggested by the above discussion.

m_  n    0 = dt (t)f . (t)f mn
T
∫

mt/T)(2 sin + nt/T)(2 cos = (t) f mn, ππ

nt/T)(2 sin i + nt/T)(2 cos ππ
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The constants Cn are known as the Fourier coefficients, ω = 2π/T is the fundamental
frequency.

If a function f(t) is known, the Fourier components can be projected out by pre-multiplying
by   exp (-im ωt)   and integrating from -T/2 to T/2.

Fourier series can be differentiated and integrated term by term.

5.1 Fourier transforms

The Fourier transform (or Fourier integral) is obtained formally be allowing the period T of
the Fourier series to become infinite.  Instead of only integer frequency contributions (as in
the Fourier series) a continuous function of frequency results. From equation (5.1) we can
write down

where K1 is an arbitrary constant.  By analogy, the Fourier coefficients Cn become a
continuous function g(ω), ie

K2 is also arbitrary, although the product K1 K2 is fixed. It is conventional to take K1 and K2

as π21/ .

Equation (5.3) is known as the Fourier transform and (5.2) the inverse Fourier transform.
The function g(ω) is called the spectrum of f(t).

It can be noted that as an integral transform it is similar to the Laplace transform but that
both limits of integration are infinite.

Example 1: Fourier transform of exponential decay function f(t) = 0 for t < 0 and
f(t) = exp (-λt) for t≥  0 with λ > 0.

t)(in exp C  = f(t) n
 - = n

ω∑
∞

∞

(5.1)

ωωω d t)(i exp )g(  K = f(t)
-

1 ∫
∞

∞

(5.2)

dt t)(-i exp f(t)  K = )g(
-

2 ωω ∫
∞

∞

(5.3)
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NB: Complex contour integration is required to derive this, however it is easily checked
using the inverse transform.

Example 2: Fourier transform of Gaussian or normal distribution function, (zero mean and
standard deviation σ).

which can be rewritten as

Finally this can be shown to give

which is also a Gaussian distribution with zero mean but with standard deviation equal to
1/σ.

ie σω σt = 1

The narrower in time an impulse is, the greater the spread of frequency components.

5.2 Properties of the Fourier transform

These are listed without proof:

i) Differentiation FT (f 1 (t)) = i ω g (ω)

ii) Integration FT (∫ t f(s) ds) = - i ω-1 g (ω) + 2π C δ (ω)
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iii) Translation FT (f (t + a)) = exp (i a ω) g (ω)

iv) Exponential multiplication FT (exp (α t) f (t)) = g( ω + i α)

where α may be real, imaginary or complex and 2π Cδ (ω) is the Fourier transform of the
constant of integration associated with the indefinite integral, and δ(ω) is the delta-function
given by

5.3  Properties of the Dirac delta-function

Combining the definitions of the Fourier transform and the inverse Fourier transform we
can write (suitably arranged)

This is very instructive since the second term, which in the delta-function notation can be
written simply as δ (t - t'), has the property of selecting out just one point from the infinite
integral and assigning a finite value to the result.  This leads to an alternative definition of
the delta-function, namely

except for t = t' where the function is infinite or more rigorously

ωωπωδ d t)(i exp  )(2 = )(
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∞
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5.4 Parseval's theorem

Parseval's theorem can be stated as:

Its proof regimes use the properties of the δ-function.

In brief, if we take the complex conjugate of (5.2), the inverse transform

The intensity I of a function is defined to be
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 g (ω)  2 is sometimes denoted as φtt (ω) or alternatively S(n) and is called the power
density spectrum or power spectral density.
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Example: Damped harmonic oscillator

 g (ω)  2 represents the energy (dissipated) per unit frequency. If σωn > > 1, then for ω ≈
ωn

which can be recognised as the response of a damped harmonic oscillator to driving
frequencies near to its resonant frequency.

Note that the term I, defined in section 5.4 is the mean square value (or variance) of the
function (often a time series).  In other words the area under a power spectral density
function S(n) is simply the variance.

It is often found convenient to plot S(n) against the logarithm of frequency.  In order to
preserve the equivalence of areas under the curve with contributions to the variance, the y-
axis is chosen as n S(n).

5.5 Frequency response, convolution and deconvolution

For a linear system with transfer function G(s) we can examine the response of the system
to a sinusoidal input u(t) = sin (ωt) using the techniques developed in section 3.

The output C(s) = G(s) U(s).  Taking a ratio of suitable polynomial expansions for G(s) and
using partial fractions to express C(s) gives
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where, it can be recalled, the pi are the poles of the system (roots of the characteristic
equation), and Ai, Bi are simply constants.

Taking inverse Laplace transforms gives

The first two terms represent the particular integral (often referred to as the steady state
response) and the remaining terms represent the complementary function (the transient
response).

Assuming all the poles pi have negative real ports (true for stable systems) the transient
terms tend to zero as t tends to infinity, thus only the first two terms remain, ie

A1 and A2 can be determined by multiplying C(s) by (s - iω) and (s + iω) respectively and
then setting s = iω and s = - iω.

Similarly A2 = G(-iω)/-2i

Written in magnitude and phase terms (ratio of steady state output to input amplitude, and
phase shift between output and input sin functions).

In other words the magnitude and phase components of a systems frequency response is
obtained by replacing s with iω in the transfer function and taking the modulus and
argument of the result.

If a system is exposed to a signal with a known spectral density X(ω), the output spectral
density can be shown to be given by

where   G (iω)  2 is sometimes written as H(ω).
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This is often written in alternative notation as

If f(x) and g(x) are two functions, the convolution, written f * g is defined to be

Note that if g is the delta-function, then h(z) = f(z).

The Fourier transform of the product of two functions is the convolution of the separate
Fourier transforms multiplied by )(2 2/1−π .

X(n)  S(n)= Y(n)
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