6. Matrices and Eigen Value Analysis

Notation: Bold capitals, \mathbf{A}, \mathbf{M} denote matrices.
Elements/components of matrix denoted by lower case with subscripts:

$$
\mathbf{A} \equiv\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is an m by n matrix, ($m \times n$)
Lower case bold is used for column or row vectors (matrices with one of the dimensions equal to unity), eg $\mathbf{u}, \mathbf{v}, \mathbf{x} \mathbf{y}$.

For square matrices: The determinant of $\boldsymbol{M}(\operatorname{det} \boldsymbol{M})$ is written $|\boldsymbol{M}|$
The transpose of \boldsymbol{A} is \boldsymbol{A}^{T}, ie $a_{i j} \leftrightarrow a_{j i}$
\boldsymbol{M} is singular if $|\boldsymbol{M}|=0$, otherwise non-singular
Inverse of \boldsymbol{A} for non-singular matrices is denoted \boldsymbol{A}^{-1} such that $\boldsymbol{A A}^{-1}$ $=\boldsymbol{I}$, the unit matrix .

A matrix \boldsymbol{M} is symmetric if $\boldsymbol{M}^{T}=\boldsymbol{M}$
If $\boldsymbol{M}^{T}=-\boldsymbol{M}$, then the matrix is skew-symmetric.
It can be shown that $(\boldsymbol{A} \boldsymbol{B})^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$
If $\boldsymbol{A}^{T}=\boldsymbol{A}^{-1}$ the matrix is orthogonal
For complex matrices \boldsymbol{A}^{*} represents taking the complex conjugate of each element.
$\left(\boldsymbol{A}^{T}\right)^{*}=\left(\boldsymbol{A}^{*}\right)^{T}$ is denoted by \boldsymbol{A}^{+}and called the Hermitian conjugate of A.

A matrix is Hermitian if $\boldsymbol{A}^{+}=\boldsymbol{A}$.

6.1 Eigenvalues and Eigenvectors

For a non-singular matrix \boldsymbol{A} and two vectors \boldsymbol{x} and \boldsymbol{y} of dimension n with \boldsymbol{A} being $n x n$, we can write

$$
x=A y
$$

which represents a transformation of x onto y. The inverse transformation is given by

$$
y=A^{-1} x
$$

If \boldsymbol{x} is simply a constant multiple of y, ie $x=\lambda \boldsymbol{y}$, then

$$
\begin{equation*}
A y=x=\lambda y \tag{6.1}
\end{equation*}
$$

A non-zero vector \boldsymbol{y} which satisfies equation (6.1) for some value of λ is called an eigenvector of \boldsymbol{A}, and λ is the corresponding eigenvalue.

The eigenvector is the discrete analogue, in relation to a matrix, of the continuous eigenfunction of a differential operator.

Denote the ith eigenvector by \boldsymbol{y}^{i} and the corresponding eigenvalue by $\lambda \lambda_{i}$ for $\mathrm{i}=1,2, \ldots n$.

$$
\begin{equation*}
A \boldsymbol{y}^{i}=\lambda \lambda_{i} \boldsymbol{y}^{i} \tag{6.2}
\end{equation*}
$$

It turns out that an $n x n$ matrix has n eigenvectors and eigenvalues.

It can be shown that the eigenvalues of a Hermitian matrix are real and that eigenvalues corresponding to different eigenvalues are orthogonal.

To solve (6.1) we proceed as follows:

$$
\begin{gathered}
A y-\lambda \lambda y=0 \\
\Rightarrow \quad A y-\lambda \lambda I y=(A-\lambda I) y=0
\end{gathered}
$$

This can be solved (with non-trivial result) only if

$$
\begin{equation*}
|\boldsymbol{A}-\lambda \boldsymbol{I}|=0 \tag{6.3}
\end{equation*}
$$

ie for non-zero eigenvectors. This is an application of the general result:

The equation $\boldsymbol{A x}=0$, can have a solution with $\boldsymbol{x} \neq 0$ only if $|\boldsymbol{A}|=0$

Equation 6.3 is known as the characteristic equation for \boldsymbol{A}. It is a polynomial equation in λ of degree n. Its roots are the eigenvalues λ_{i}. The \boldsymbol{y}^{i} corresponding to the λ_{I} are the eigenvectors of \boldsymbol{A}.

The trace or spur of a matrix \boldsymbol{A} is defined to be $\sum_{i} a_{i i}$. It can be shown that $\sum_{i} \lambda_{i}$ is equal to the trace of the original matrix \boldsymbol{A}.

It can be shown that eigenvectors of a Hermitian matrix can always be made to be mutually orthogonal (normalised).

Normalised eigenvectors can be used to diagonalise matrices. To diagonalise a matrix \boldsymbol{A} we are looking for a matrix \boldsymbol{U} such that $\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{U}$ is a diagonal matrix $\boldsymbol{\Lambda}$ (ie $a_{i j}=0 \forall i \neq j$).

It can be shown that simply taking the elements of \boldsymbol{U} according to

$$
\begin{equation*}
\mathrm{u}_{i j}=\left(y^{j}\right) i=y_{i}^{j} \tag{6.4}
\end{equation*}
$$

is sufficient. The transformation $\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{U}$ is called an orthogonal transformation. It is a special case of the general similarity transformation of \boldsymbol{A} given by $\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ for a non-singular matrix S

We are now in a position to use the theory developed to examine dynamical systems.

Example. Normal frequencies and modes of oscillation of three particles of masses, $m, \mu m$, m connected in that order in a straight line to two equal light springs of force constant k.

Fig 6.1 The coordinate system for the example. The three masses, $m, \mu m$ and m are connected by two equal light springs of force constant k.

The situation is shown in Fig 6.1 in which the coordinates of the particles x_{1}, x_{2}, x_{3}, are measured from their equilibrium positions at which the springs are neither extended nor compressed.

The kinetic energy of the system is simply

$$
T=\frac{1}{2} m\left(\dot{x}_{1}^{2}+\mu \dot{x}_{2}^{2}+\dot{x}_{3}^{2}\right)
$$

whilst the potential energy stored in the springs is

$$
V=\frac{1}{2} k\left[\left(x_{2}-x_{1}\right)^{2}+\left(x_{3}-x_{2}\right)^{2}\right]
$$

The kinetic and potential energy symmetric matrices are thus

$$
\mathbf{A}=\frac{\mathrm{m}}{2}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & 1
\end{array}\right], \quad B=\frac{k}{2}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

To find the normal frequencies we have, following 6.3, to solve $\left|\boldsymbol{B}-\omega^{2} \boldsymbol{A}\right|=0$. Thus writing $m \omega^{2} / k=\lambda$ we have

$$
0=\left[\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & 2-\mu \lambda & -1 \\
0 & -1 & 1-\lambda
\end{array}\right]
$$

which leads to

$$
\lambda=0,1, \text { or } 1+(2 / \mu)
$$

The corresponding eigenvectors are (respectively)
$\mathbf{X}^{1}=3^{-1 / 2}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \quad \mathbf{X}^{2}=2^{-1 / 2}\left[\begin{array}{l}1 \\ 0 \\ -1\end{array}\right], \quad \mathbf{X}^{3}=[2+(4 / \mu 2)]^{-1 / 2}\left[\begin{array}{l}1 \\ -2 / \mu \\ 1\end{array}\right]$.
The physical motions associated with these solution are illustrated in fig 6.2. The first, λ $\lambda=\omega \omega=0$ and all the x_{i} equal, merely describes the bodily translation of the whole system, with no (i.e. zero frequency) internal oscillations.

In the second solution the central particle remains stationary, $x^{2}{ }_{2}=0$, whilst the other two oscillate with equal amplitudes in antiphase with each other. This motion of frequency $\omega=$ $(\mathrm{k} / \mathrm{m})^{1 / 2}$ is illustrated in the middle of fig 6.2.

Fig 6.2 The normal modes of the masses and springs

The final and most complicated of the three normal modes has a frequency $w=(k(\mu+$ 2) $/ m \mu)^{1 / 2}$, and involves a motion of the central particles which is in antiphase with that of the two outer ones and has an amplitude which is $2 / \mu$ times as great. In this motion the two springs are compressed and extended in turn.

The eigenvectors \boldsymbol{x}^{k} obtained by solving $\left(\boldsymbol{B}-\omega^{2} \boldsymbol{A}\right) \boldsymbol{x}=0$ are not mutually orthogonal unless \boldsymbol{A} is a multiple of the unit martrix $[\mu=1]$, but it can be shown that they do satisfy
$\boldsymbol{x}^{\mathrm{Ti}} \mathbf{A} \boldsymbol{x}^{\mathrm{j}}=\mathrm{O}$ and $\boldsymbol{x}^{\mathrm{Ti}} \mathrm{B} \boldsymbol{x}^{\mathrm{j}}=\mathrm{O}$ for $i \neq j$

