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Unit FE-3 Foundation Electricity: 

Basic AC Theory 

What this unit is about 

Electrical energy is on the whole generated in AC form. The reasons why this is so are 
explained and the response of resistors, inductors and capacitors to the application of AC 
voltage are analysed. It is shown that to calculate the current in AC circuits containing R 
plus L and/or C components it is necessary to use phasor rather than scalar quantities. It is 
also shown that calculations are greatly eased if complex algebra is employed. Typical 
mixed circuits are then analysed using complex notation.  Finally, it is pointed out that if 
power electronic circuits are employed, their non-linear effect results in non-sinusoidal 
quantities, which can be determined through Fourier analysis. The implications of the 
presence of harmonics in power networks are then discussed.                                       

 

Why is this knowledge necessary? 

Renewable energy sources are used mainly to generate AC electrical power, which is 
injected into power networks consisting of large number of transmission lines, other 
conventional generators and consumers. Such power networks, especially in developed 
countries, are of considerable complexity. To determine the way these injected powers 
flow from generators to consumers requires complex calculations based on network 
analysis. This unit introduces the basic AC circuit theory that enables students to carry out 
network analysis in simple power circuits consisting of R, L and C components. This 
knowledge is an essential prerequisite in the understanding of power flows in networks. 
Frequently, renewable energy generators are interfaced to power networks through power 
electronic converters. The non-linear nature of such converters is examined and the reasons 
why converters generate harmonics are explained. The undesirable effects of harmonics 
injected into power networks are discussed. 

At the beginning of each section the course module(s) that requires the 
material in this particular section as background knowledge are indicated 
in bold italics. All sections of this unit are required as background material 
for Unit FE-4. Some sections contain simple exercises. 

N.B. The text uses 60 rather than 50 Hz as the mains frequency. This is of no consequence 
in the understanding of the material and in its application to 50 Hz systems. 
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1. Alternating Current 
 

1.1 Why Alternating Current? 
 
[This material relates predominantly to module ELP032] 
 
As useful and as easy to understand as DC is, it is not the only "kind" of electricity in use. 
Certain sources of electricity (most notably, rotary electro-mechanical generators) 
naturally produce voltages alternating in polarity, reversing positive and negative over 
time. Either as a voltage switching polarity or as a current switching direction back and 
forth, this "kind" of electricity is known as Alternating Current (AC):  
 
Whereas the familiar battery symbol is used as a generic symbol for any DC voltage 
source, a circle with a wavy line inside is the generic symbol for any AC voltage source.  
 
One might wonder why anyone would bother with such a thing as AC. It is true that in 
some cases AC holds no practical advantage over DC. In applications where electricity is 
used to dissipate energy in the form of heat, the polarity or direction of current is 
irrelevant. However, with AC it is possible to build electric generators and motors that are 
far more efficient than the DC equivalents and it is possible to use a variety of voltages in 
the transmission and distribution of electrical energy (a very important issue to be 
discussed in the module ELP032). So AC has been adopted across the world in high power 
applications (although DC is used for special cases of bulk power transfer through high 
voltage cables). To explain the details of why this is so, background knowledge about AC 
is necessary.  
 

 If a machine is constructed to rotate a magnetic field around a set of stationary wire coils 
with the turning of a shaft, AC voltage will be produced across the wire coils as that shaft 
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is rotated, in accordance with Faraday's Law of electromagnetic induction. This is the basic 
operating principle of an AC generator, also known as an alternator:  
        
                           
Notice how the polarity of the voltage across the wire coils reverses as the opposite poles 
of the rotating magnet pass by. Connected to a load, this reversing voltage polarity will 
create a reversing current direction in the circuit. The faster the alternator's shaft is turned, 
the faster the magnet will spin, resulting in an alternating voltage and current of higher 
frequency. 
 
While DC generators work on the same general principle of electromagnetic induction, 
their construction is not as simple as their AC counterparts. With a DC generator, the coils 
are mounted in the shaft where the magnet is on the AC alternator, and electrical 
connections are made to this spinning coil via stationary carbon "brushes" contacting 
copper strips on the rotating shaft. All this is necessary to switch the coil's changing output 
polarity to the external circuit so the external circuit sees a constant polarity: The problems 
involved with making and breaking electrical contact with a moving coil should be obvious 
(sparking and heat), especially if the shaft of the generator is revolving at high speed.  
 
The benefits of AC over DC with regard to generator design are also reflected in electric 
motors. So we know that AC generators and AC motors tend to be simpler than DC 
generators and DC motors. This relative simplicity translates into greater reliability and 
lower cost of manufacture.  
 
But what else is AC good for? Surely there must be more to it than design details of 
generators and motors! Indeed there is. There is an effect of electromagnetism known as 
mutual induction, which was referred to in Unit FE-1. If we have two magnetically coupled 
coils and we energise one coil with AC, we will create an AC voltage in the other coil. 
When used as such, this device is known as a transformer:  

 
 
The fundamental significance of a transformer is its ability to step voltage up or down from 
the powered coil to the unpowered coil. The AC voltage induced in the unpowered 
("secondary") coil is equal to the AC voltage across the powered ("primary") coil 
multiplied by the ratio of secondary coil turns to primary coil turns. If the secondary coil is 
powering a load, the current through the secondary coil is just the opposite: primary coil 
current multiplied by the ratio of primary to secondary turns. This relationship has a very 
close mechanical analogy, using torque and speed to represent voltage and current, 
respectively:  
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If the winding ratio is reversed so that the primary coil has fewer turns than the secondary 
coil, the transformer "steps up" the voltage from the source level to a higher level at the 
load:  
 
The transformer's ability to step AC voltage up or down with ease gives AC an advantage 
unmatched by DC in the realm of power distribution. When transmitting electrical power 
over long distances, it is far more efficient to do so with stepped-up voltages and stepped-
down currents (smaller-diameter wire with less resistive power losses), then step the 
voltage back down and the current back up for industry, business, or consumer use.  
 

 
 
Transformer technology has made long-range electric power distribution practical. Without 
the ability to efficiently step voltage up and down, it would be cost-prohibitive to construct 
power systems for anything but close-range (within a few kilometres at most) use.  
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Section Review: 
• AC stands for "Alternating Current," meaning voltage or current that changes polarity 

or direction, respectively, over time.  
• AC electromechanical generators and motors are of simpler construction than DC 

equivalents.  
• A transformer is a pair of mutually-inductive coils used to convey AC power from one 

coil to the other. Often, the number of turns in each coil is set to create a voltage 
increase or decrease from the powered (primary) coil to the unpowered (secondary) 
coil.   

 
1.2 AC Waveforms 

 
Alternators are designed to produce an AC voltage that is very close to a pure sine wave.   
 
If we were to follow the changing voltage produced by a coil in an alternator from any 
point on the sine wave graph to that point when the wave shape begins to repeat itself, we 
would have marked exactly one cycle of that wave. This is most easily shown by spanning 
the distance between identical peaks, but can be measured between any corresponding 
points on the graph. The degree marks on the horizontal axis of the graph represent the 
domain of the trigonometric sine function, and also the angular position of our simple two-
pole alternator shaft as it rotates:  
 

 
 
Since the horizontal axis of this graph can mark the passage of time as well as shaft 
position in degrees, the dimension marked for one cycle can be measured in a unit of time, 
most often fractions of a second. When expressed as a measurement, this is often called the 
period of a wave and it is usually designated by “T”.  
A more popular measure for describing the alternating rate of an AC voltage or current 
wave than period is the frequency    (i.e. the "cycles per second") in Hertz (abbreviated Hz) 
usually designated by “f”. 
Period and frequency are mathematical reciprocals of one another. That is to say, if a wave 
has a period of 10 seconds, its frequency will be 0.1 Hz, or 1/10 of a cycle per second:  
 
 

 
 
 
While electromechanical alternators are designed to produce sine waves, this is not the 
only kind of alternating wave in existence. Other "waveforms" of AC are commonly 
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produced within electronic circuitry. Here are but a few sample waveforms and their 
common designations:  
 

 
 
Even in circuits that are supposed to manifest "pure" sine, square, triangle, or sawtooth 
voltage/current waveforms, the real-life result is often a distorted version of the intended 
waveshape. Some waveforms are so complex that they defy classification as a particular 
"type" (including waveforms associated with many kinds of musical instruments). 
Generally speaking, any waveshape bearing close resemblance to a perfect sine wave is 
termed sinusoidal, anything different being labelled as non-sinusoidal. Power electronic 
converters used extensively to interface renewable energy generators to power networks 
generate non-sinusoidal waveforms. The implications of this are discussed at the end of 
this unit. 
 
Section Review: 
• AC produced by an electromechanical alternator follows the graphical shape of a sine 

wave.  
• One cycle of a wave is one complete evolution of its shape until the point that it is 

ready to repeat itself.  
• The period of a wave is the amount of time it takes to complete one cycle.  
• Frequency is the number of cycles that a wave completes in a given amount of time 

and it is measured in Hertz (Hz), 1 Hz being equal to one complete wave cycle per 
second.  

• f=1/T 
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1.3 Measurements of AC Magnitude 
 
With AC we encounter a measurement problem if we try to express how large or small the 
quantity is. With DC, where quantities of voltage and current are stable, we have little 
trouble expressing how much voltage or current we have in any part of a circuit. But how 
do you grant a single measurement of magnitude to something that is constantly changing?  
 
One way to express the magnitude of an AC quantity is to measure its peak height on a 
waveform graph. This is known as the peak or crest value of an AC waveform:  
 

 
 
Another way is to measure the total height between opposite peaks. This is known as the 
peak-to-peak (P-P) value of an AC waveform:  
 

 
 
Unfortunately, either one of these expressions of waveform magnitude can be misleading 
when comparing two different types of waves. For example, a square wave peaking at 10 
volts is obviously a greater amount of voltage for a greater amount of time than a triangle 
wave peaking at 10 volts. The effects of these two AC voltages powering a load would be 
quite different:  
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One way of expressing the magnitude of different waveshapes in a more equivalent fashion 
is to mathematically average the values of all the positive or negative points on a 
waveform's graph to a single, aggregate number. The best way to express the magnitudes 
of AC waveforms equivalently, however, is to rate them in terms of their ability to perform 
useful work, and the mathematical average of an AC waveform doesn't represent that.  
 
Anyone familiar with modern woodworking equipment knows what a bandsaw and a 
jigsaw are. Both types of saws cut with a thin, toothed, motor-powered metal blade to cut 
wood. But while the bandsaw uses a continuous motion of the blade to cut, the jigsaw uses 
a back-and-forth motion. The comparison of alternating current (AC) to direct current 
(DC) can be likened to the comparison of these two saw types:  
 

 
 
The problem of trying to describe the changing quantities of AC voltage or current in a 
single measurement is also present in this saw analogy: how might we express the speed of 
a jigsaw blade? 
A bandsaw blade moves with a constant speed, similar to the way DC voltage pushes or 
DC current moves with a constant magnitude. A jigsaw blade, on the other hand, moves 
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back and forth, its blade speed constantly changing. What is more, the back-and-forth 
motion of any two jigsaws may not be of the same type, depending on the mechanical 
design of the saws. One jigsaw might move its blade with a sine-wave motion, while 
another with a triangle-wave motion. 
 
To rate a jigsaw based on its peak blade speed would be quite misleading when comparing 
one saw to another (or a jigsaw with a bandsaw!). Despite the fact that these different saws 
move their blades in different manners, they are equal in one respect: they all cut wood, 
and a measurement of this equal function can serve as a common basis for which to rate 
blade speed. 
 
Picture a jigsaw and bandsaw side-by-side, equipped with identical blades (same tooth 
pitch, angle, etc.), equally capable of cutting the same thickness of the same type of wood 
at the same rate. We might say that the two saws were equivalent or equal in their cutting 
capacity. 
 
This is the general idea used to assign a "DC equivalent" measurement to any AC voltage 
or current: whatever magnitude of DC voltage or current would produce the same amount 
of heat energy dissipation through an equal resistance:  
 

 
In the two circuits above, we have the same amount of load resistance (2 ohm) dissipating 
the same amount of power in the form of heat (50 watts), one powered by AC and the other 
by DC. Because the AC voltage source pictured above is equivalent (in terms of power 
delivered to a load) to a 10 volt DC battery, we would call this a "10 volt" AC source. 
More specifically, we would denote its voltage value as being 10 volts RMS. 
 
The qualifier "RMS" stands for Root Mean Square, which is the mathematical method of 
deriving the DC equivalent value from points on a graph. Essentially, this method consists 
of squaring all the positive and negative points on a waveform graph, (remember that the 
power dissipated in a resistor is proportional to the square of the voltage or current) 
averaging those squared values, then taking the square root of that average to obtain the 
final answer. RMS magnitude measurement is the best way to relate AC quantities to DC 
quantities, or other AC quantities of differing waveform shapes, when dealing with 
measurements of electric power. 
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For other considerations, peak or peak-to-peak measurements may be the best to employ.  
For example, when rating insulators for service in high-voltage AC applications, peak 
voltage measurements are the most appropriate, because the principal concern here is 
insulator "flashover" caused by brief spikes of voltage, irrespective of time.  
 
For "pure" waveforms, simple conversion coefficients can be calculated which equate 
Peak, Peak-to-Peak, Average, and RMS measurements.  
 

 
 
Bear in mind that the conversion constants shown above for RMS and average 
measurements hold true only for pure waveshapes. The RMS and average values of 
distorted waveshapes are not related by the same multiplier values:  
 

 
 
 
 
Section Review: 
• The amplitude of an AC waveform is its peak as depicted on a graph over time.  
• Peak-to-peak measurement is the total height of an AC waveform as measured from 

maximum positive to maximum negative peaks on a graph.  
• The Average measurement is the mathematical "mean" of all positive or all negative 

points on a waveform graph.  
• "RMS" stands for Root Mean Square, and is a way of expressing an AC quantity of 

voltage or current in terms functionally equivalent to DC.  
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1.4 Simple AC circuit Calculations 
 
Over the course of the next few sections, you will learn that AC circuit measurements and 
calculations can get very complicated due to the complex nature of alternating current in 
circuits with inductance and capacitance. However, with simple circuits involving nothing 
more than an AC power source and resistance, the same laws and rules of DC apply simply 
and directly.  
 

 
 

 
 
Series resistances still add, parallel resistances still diminish, and the Laws of Kirchhoff 
and Ohm still hold true. Actually, as we will discover later on, these rules and laws always 
hold true, it's just that we have to express the quantities of voltage, current, and opposition 
to current in more advanced mathematical forms. With purely resistive circuits, however, 
these complexities of AC are of no practical consequence, and so we can treat the numbers 
as though we were dealing with simple DC quantities.  
 
If the source voltage is given in AC RMS volts then all calculated currents and voltages are 
in AC RMS units as well. This holds true for any calculation based on Ohm's Laws, 
Kirchhoff's Laws, etc. Unless otherwise stated, all values of voltage and current in AC 
circuits are generally given and assumed to be RMS rather than peak, average, or peak-to-
peak.  
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Section Review: 
• All the old rules and laws of DC (Kirchhoff's Voltage and Current Laws, Ohm's Law) 

still hold true for AC. However, with more complex circuits, we need to represent the 
AC quantities in more complex form.  

 
1.5 AC Phase 

 
Things start to get complicated when we need to relate two or more AC voltages or 
currents of the same frequency that are out of step with each other. By "out of step," we 
mean that the two waveforms are not synchronised: that their peaks and zero points do not 
match up at the same points in time. The following graph illustrates an example of this:  
 

 
 
The two waves shown above (A and B) are of the same amplitude and frequency, but they 
are out of step with each other. In technical terms, this is called a phase shift.  
The shift between these two waveforms is about 45 degrees, the "A" wave being ahead of 
the "B" wave. A sampling of different phase shifts is given in the following graphs to 
better illustrate this concept:  
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Because the waveforms in the above examples are at the same frequency, they will be out 
of step by the same angular amount at every point in time. For this reason, we can express 
phase shift for two or more waveforms of the same frequency as a constant quantity for the 
entire wave, and not just an expression of shift between any two particular points along the 
waves. That is, it is safe to say something like, "voltage 'A' is 45 degrees out of phase with 
voltage 'B'." Whichever waveform is ahead in its evolution is said to be leading and the 
one behind is said to be lagging. 
 
Phase shift, like voltage, is always a measurement relative between two things. There's 
really no such thing as a waveform with an absolute phase measurement because there's no 
such thing as a universal reference for phase. Typically in the analysis of AC circuits, the 
voltage waveform of the power supply is used as a reference for phase, that voltage stated 
as "xxx volts at 0 degrees." Any other AC voltage or current in that circuit will have its 
phase shift expressed in terms relative to that source voltage. 
 
This is what makes AC circuit calculations more complicated than DC. When applying 
Ohm's Law and Kirchhoff's Laws, quantities of AC voltage and current must reflect phase 
shift as well as amplitude. Mathematical operations of addition, subtraction, multiplication, 
and division must operate on these quantities of phase shift as well as amplitude. 
Fortunately, there is a mathematical system of quantities called complex numbers ideally 
suited for this task of representing amplitude and phase. 
  
 
Section Review: 
• Phase shift is where two or more waveforms are out of step with each other.  
• The amount of phase shift between two waves can be expressed in terms of degrees. 
• A leading waveform is defined as one waveform that is ahead of another in its 

evolution. A lagging waveform is one that is behind another. 

Example:  
• Calculations for AC circuit analysis must take into consideration both amplitude and 
phase shift of voltage and current waveforms. This requires the use of complex numbers.  
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2. Phasors and Complex Numbers 
 

2.1 Scalars and Phasors 
 
The kind of information that expresses a single dimension, such as linear distance, is called 
a scalar quantity in mathematics. The voltage produced by a battery, for example, is a 
scalar quantity. So is the resistance of a piece of wire (ohms), or the current through it 
(amps). 
 
However, when we begin to analyse alternating current circuits, we find that quantities of 
voltage, current, and even resistance (called impedance in AC) are not the familiar one-
dimensional quantities we are used to measuring in DC circuits. Rather, these quantities, 
because they are dynamic (alternating in direction and amplitude), possess other 
dimensions that must be taken into account. Frequency and phase shift are two of these 
dimensions that come into play. Even with relatively simple AC circuits, where we're only 
dealing with a single frequency, we still have the dimension of phase shift to contend with 
in addition to the amplitude. 
 
In order to successfully analyse AC circuits, we need to work with mathematical objects 
and techniques capable of representing these multi-dimensional quantities. A complex 
number is a single mathematical quantity able to express these two dimensions of 
amplitude and phase shift at once.  
 
Complex numbers are easier to grasp when they're represented graphically. If I draw a line 
with a certain length (magnitude) and angle (direction), I have a graphic representation of a 
complex number which is commonly known in physics as a phasor:  
 

 
 
Like distances and directions on a map, there must be some common frame of reference for 
angle figures to have any meaning. In this case, directly right is considered to be 0o, and 
angles are counted in a positive direction going counter-clockwise:  
 
One-dimensional, scalar numbers are perfectly adequate for counting beads, representing 
weight, or measuring DC battery voltage, but they fall short of being able to represent 
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something more complex like the amplitude and phase of an AC waveform. To represent 
these kinds of quantities, we need multidimensional representations. In other words, we 
need a number line that can point in different directions, and that's exactly what a phasor 
is.  

 
Section Review: 
• A scalar number is the type of mathematical object that people are used to using in 

everyday life: a one-dimensional quantity like temperature, length, weight, etc.  
• A phasor is a graphical representation of a complex number. It looks like an arrow, 

with a starting point, a tip, a definite length, and a definite direction. 
• A complex number is a mathematical quantity representing two dimensions of 

magnitude and direction.  
 

2.2 Phasors and Waveforms 
 
So, how exactly can we represent AC quantities of voltage or current in the form of a 
phasor? The length of the phasor represents the RMS magnitude of the waveform. 
The greater the magnitude of the waveform, the greater the length of its corresponding 
phasor. The angle of the phasor, however, represents the phase shift in degrees between the 
waveform in question and another waveform acting as a "reference" in time. Usually, when 
the phase of a waveform in a circuit is expressed, it is referenced to the power supply 
voltage waveform (arbitrarily stated to be "at" 0o). If there is more than one AC voltage 
source, then one of those sources is arbitrarily chosen to be the phase reference for all other 
measurements in the circuit. Remember that phase is always a relative measurement 
between two waveforms rather than an absolute property.  
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The greater the phase shift in degrees between two waveforms, the greater the angle 
difference between the corresponding phasors.  
 
This concept of a reference point is not unlike that of the "ground" point in a circuit for the 
benefit of voltage reference. With a clearly defined point in the circuit declared to be 
"ground," it becomes possible to talk about voltage "on" or "at" single points in a circuit, 
being understood that those voltages (always relative between two points) are referenced to 
"ground." Correspondingly, with a clearly defined point of reference for phase it becomes 
possible to speak of voltages and currents in an AC circuit having definite phase angles. 
Example: "the current through resistor R5 is 24.3 amps at -64 degrees," which means the 
current waveform lags 64o behind the main source voltage waveform.  
 
Section Review: 
• When used to describe an AC quantity, the length of a phasor represents the RMS 

magnitude of the wave while the angle of a phasor represents the phase angle of the 
wave relative to some other (reference) waveform.  

 
2.3 Simple Phasor Addition 

 
Remember that phasors are mathematical objects just like numbers on a number line: they 
can be added, subtracted, multiplied, and divided. Addition is perhaps the easiest phasor 
operation to visualise, so we'll begin with that. If phasors with common angles are added, 
their magnitudes (lengths) add up just like regular scalar quantities:  
 

 
 
Similarly, if AC voltage sources with the same phase angle are connected together in 
series, their voltages add just as you might expect with DC batteries:  
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Determining whether or not these voltage sources are opposing each other requires an 
examination of their polarity markings and their phase angles. Notice how the polarity 
markings in the above diagram seem to indicate additive voltages (from left to right, we 
see - and + on the 6 volt source, - and + on the 8 volt source). Even though these polarity 
markings would normally indicate an additive effect in a DC circuit (the two voltages 
working together to produce a greater total voltage), in the AC circuit below they're 
actually pushing in opposite directions because one of those voltages has a phase angle of 
0o and the other a phase angle of 180o. The result, of course, is a total voltage of 2 volts.  
 
 
 

 
 
 
 
Since both sources are listed as having equal phase angles (0o), they truly are opposed to 
one another, and the overall effect is the same as the former scenario with "additive" 
polarities and differing phase angles: a total voltage of only 2 volts.  
 

 
 
The resultant voltage can be expressed in two different ways: 2 volts at 180o with the (-) 
symbol on the left and the (+) symbol on the right, or 2 volts at 0o with the (+) symbol on 
the left and the (-) symbol on the right. A reversal of wires from an AC voltage source is 
the same as phase-shifting that source by 180o.  
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2.4 General Phasor Addition 
 
If phasors with uncommon angles are added, their magnitudes (lengths) add up quite 
differently than that of scalar magnitudes:  
 

                                 
If two AC voltages, 90o out of phase, are added together by being connected in series, their 
voltage magnitudes do not directly add or subtract as with scalar voltages in DC. Instead, 
these voltage quantities are complex quantities, and just like the above phasors, which add 
up in a trigonometric fashion, a 6 volt source at 0o added to an 8 volt source at 90o results 
in 10 volts at a phase angle of 53.13o:  
 

 
 
Compared to DC circuit analysis, this is very strange indeed. Note that it's possible to 
obtain voltmeter indications of 6 and 8 volts, respectively, across the two AC voltage 
sources, yet only read 10 volts for a total voltage!  
 
There is no suitable DC analogy for what we're seeing here with two AC voltages out of 
phase. DC voltages can only directly aid or directly oppose, with nothing in between. With 
AC, two voltages can be aiding or opposing one another to any degree between fully-
aiding and fully-opposing, inclusive. Without the use of phasor (complex number) notation 
to describe AC quantities, it would be very difficult to perform mathematical calculations 
for AC circuit analysis.  
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Section Review: 
• DC voltages can only either directly aid or directly oppose each other when connected 

in series. AC voltages may aid or oppose to any degree depending on the phase shift 
between them.  

 
2.5 Polar and Rectangular Notation 

 
In order to work with these complex numbers without drawing phasors, we first need some 
kind of standard mathematical notation. There are two basic forms of complex number 
notation: polar and rectangular.  
 
Polar form is where a complex number is denoted by the length (otherwise known as the 
magnitude, absolute value, or modulus) and the angle of its phasor. Here are two examples 
of phasors and their polar notations:  
 

 
 
Standard orientation for phasor angles in AC circuit calculations defines 0o as being to the 
right (horizontal), making 90o straight up, 180o to the left, and 270o straight down.  
 
Rectangular form, on the other hand, is where a complex number is denoted by its 
respective horizontal and vertical components. In essence, the angled vector is taken to be 
the hypotenuse of a right triangle, described by the lengths of the adjacent and opposite 
sides. Rather than describing a vector's length and direction by denoting magnitude and 
angle, it is described in terms of its horizontal and vertical components. 
In order to distinguish the horizontal and vertical dimensions from each other, the vertical 
is prefixed with a lower-case "j". 
 
This lower-case letter does not represent a physical variable but rather a mathematical 
"operator" used to distinguish the phasor's vertical component from its horizontal 
component. As a complete complex number, the horizontal and vertical quantities are 
written as a sum:  
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The horizontal component is referred to as the real component, since that dimension is 
compatible with normal, scalar ("real") numbers. The vertical component is referred to as 
the imaginary component, since that dimension lies in a different direction, totally alien to 
the scale of the real numbers. Phasors being two-dimensional entities must be expressed on 
a two-dimensional "map” thus the two number lines perpendicular to each other.  
 
Either polar or rectangular method of notation is valid for complex numbers. The primary 
reason for having two methods of notation is for ease of longhand calculation, rectangular 
form lending itself to addition and subtraction, and polar form lending itself to 
multiplication and division. 
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Conversion between the two notational forms involves simple trigonometry as shown in 
the following figure:  
 

 
 

 
 
To convert from rectangular to polar we carry out the following:  
 

 
 
Section Review: 
• Polar notation denotes a complex number in terms of its magnitude and angular 

direction from the reference axis.  
• Rectangular notation denotes a complex number in terms of its horizontal and vertical 

components.  
• In rectangular notation, the first quantity is the "real" component (horizontal 

dimension of vector) and the second quantity is the "imaginary" component (vertical 
dimension of vector). The imaginary component is preceded by a lower-case "j," 
sometimes called the "j operator."  
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 2.6 Complex Number Arithmetic 
 
[This material relates predominantly to module ELP032] 
 
Since complex numbers are legitimate mathematical entities, just like scalar numbers, they 
can be added, subtracted, multiplied, divided, squared, inverted, just like any other kind of 
number. Some scientific calculators are programmed to directly perform these operations 
on two or more complex numbers, but these operations can also be done "by hand."  
 
Addition and subtraction with complex numbers in rectangular form is easy. For addition, 
simply add up the real components of the complex numbers to determine the real 
component of the sum, and add up the imaginary components of the complex numbers to 
determine the imaginary component of the sum:  
 

 
 
When subtracting complex numbers in rectangular form, simply subtract the real 
component of the second complex number from the real component of the first to arrive at 
the real component of the difference, and subtract the imaginary component of the second 
complex number from the imaginary component of the first to arrive the imaginary 
component of the difference:  
 

 
 
For longhand multiplication and division, polar is the favored notation to work with. When 
multiplying complex numbers in polar form, simply multiply the polar magnitudes of the 
complex numbers to determine the polar magnitude of the product, and add the angles of 
the complex numbers to determine the angle of the product:  
 

 
 
Division of polar-form complex numbers is also easy: simply divide the polar magnitude of 
the first complex number by the polar magnitude of the second complex number to arrive 
at the polar magnitude of the quotient, and subtract the angle of the second complex 
number from the angle of the first complex number to arrive at the angle of the quotient:  
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To obtain the reciprocal, or "invert" (1/x), a complex number, simply divide the number (in 
polar form) into a scalar value of 1, which is nothing more than a complex number with no 
imaginary component (angle = 0):  
 

 
 
These are the basic operations you will need to know in order to manipulate complex 
numbers in the analysis of AC circuits. 

 
Section Review: 
• To add complex numbers in rectangular form, add the real components and add the 

imaginary components. Subtraction is similar.  
• To multiply complex numbers in polar form, multiply the magnitudes and add the 

angles. To divide, divide the magnitudes and subtract one angle from the other.  
 

2.7 Some Examples with AC Circuits 
 
Let's connect three AC voltage sources in series and use complex numbers to determine 
additive voltages. All the rules and laws learned in the study of DC circuits apply to AC 
circuits as well (Ohm's Law, Kirchhoff's Laws, network analysis methods), with the 
exception of power calculations (a topic to be dealt with later). The only qualification is 
that all variables must be expressed in complex form, taking into account phase as well as 
magnitude, and all voltages and currents must be of the same frequency (in order that their 
phase relationships remain constant).  
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The polarity marks for all three voltage sources are oriented in such a way that their stated 
voltages should add to make the total voltage across the load resistor. The set-up of our 
equation to find total voltage appears as such:  
 

 
 
Graphically, the phasors add up in this manner:  
 

 
 
The sum of these phasors will be a resultant phasor originating at the starting point for the 
22 volt phasor (dot at upper-left of diagram) and terminating at the ending point for the 15 
volt phasor (arrow tip at the middle-right of the diagram):  
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In order to determine what the resultant phasor's magnitude and angle are without resorting 
to graphic images, we can convert each one of these polar-form complex numbers into 
rectangular form and add. Remember, we're adding these figures together because the 
polarity marks for the three voltage sources are oriented in an additive manner:  
 

 
In polar form, this equates to 36.8052 volts < -20.5018o. What this means in real terms is 
that the voltage measured across these three voltage sources will be 36.8052 volts, lagging 
the 15 volt (0o phase reference) by 20.5018o. A voltmeter connected across these points in 
a real circuit would only indicate the polar magnitude of the voltage (36.8052 volts), not 
the angle. An oscilloscope could be used to display two voltage waveforms and thus 
provide a phase shift measurement, but not a voltmeter. The same principle holds true for 
AC ammeters: they indicate the polar magnitude of the current, not the phase angle.  
 
This is extremely important in relating calculated figures of voltage and current to real 
circuits. Although rectangular notation is convenient for addition and subtraction, and was 
indeed the final step in our sample problem here, it is not immediately applicable to 
practical measurements. Rectangular figures must be converted to polar figures 
(specifically polar magnitude) before they can be related to actual circuit measurements.  
 
Section Review: 
• All the laws and rules of DC circuits apply to AC circuits, with the exception of power 

calculations, so long as all values are expressed and manipulated in complex form, and 
all voltages and currents are at the same frequency.  

• Meter measurements in an AC circuit correspond to the polar magnitudes of 
calculated values.  
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3. The Concept of Impedance 
 

3.1 AC Resistor Circuits 
 

 
 
If we were to plot the current and voltage for a very simple AC circuit consisting of a 
source and a resistor, it would look something like this:  
 

 
 
Because the resistor simply and directly resists the flow of electrons at all periods of time, 
the waveform for the voltage drop across the resistor is exactly in phase with the waveform 
for the current through it.  At any instant the current ‘i’ is given from ohm’s law by 
                                                          i=v/R  
 
We can also calculate the instantaneous power ‘p’ dissipated by this resistor from p=Ri^2, 
and plot those values on the same graph.  
Note that the power is always positive, i.e. the resistor acts at all times as a load or a ‘sink’ 
of energy converting irreversibly electrical into thermal energy.  
 

3.2 AC Inductor Circuits 
 
Whereas resistors simply oppose the flow of electrons through them (by dropping a voltage 
directly proportional to the current), inductors oppose changes in current through them, by 
dropping a voltage directly proportional to the rate of change of current. This opposition to 
current change is called reactance, rather than resistance.  
 
 
The ‘ohm’s’ law for an inductor is given by 
 

 
 
To show what happens with alternating current, let's analyse a simple inductor circuit:  
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If we were to plot the current and voltage for this very simple circuit, it would look 
something like this:  

                                   
 

 
Remember, the voltage dropped across an inductor is a reaction against the change in 
current through it. This results in a voltage wave that is 90o out of phase with the current 
wave. Looking at the graph, the voltage wave has a "head start" on the current wave; the 
voltage "leads" the current, and the current "lags" behind the voltage.  
 
Things get even more interesting when we plot the instantaneous power for this circuit 
using the expression p=ei :  
 

 
 
Because instantaneous power is the product of the instantaneous voltage and the 
instantaneous current (p=ei), the power equals zero whenever the instantaneous current or 
voltage is zero. Whenever the instantaneous current and voltage are both positive (above 
the line), the power is positive. As with the resistor example, the power is also positive 
when the instantaneous current and voltage are both negative (below the line). However, 
because the current and voltage waves are 90o out of phase, there are times when one is 
positive while the other is negative, resulting in equally frequent occurrences of negative 
instantaneous power.  In FE-1 we established the fact that negative power associated with 
a circuit element implies ‘generation’ rather than ‘consumption’ of power. This means that 
the inductor, at times, is acting as a source releasing power back to the circuit.  
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Since the positive and negative power cycles are equal in magnitude and duration over 
time, the inductor releases just as much power back to the circuit as it absorbs over the 
span of a complete cycle. What this means in a practical sense is that the reactance of an 
inductor dissipates a net energy of zero, quite unlike the resistance of a resistor, which 
dissipates energy in the form of heat. Mind you, this is for perfect inductors only, which 
have no wire resistance.  
 If we assume a current waveform that is sinusoidal and we substitute this into the ‘ohm’s’ 
equation for the inductor, we get 

   

The inductor’s opposition to alternating current ( ) is similar to resistance, but 
different in that it always results in a phase shift between current and voltage, and it 
dissipates zero net power. Because of the differences, it has a different name: reactance. 
Reactance to AC is expressed in ohms, just like resistance is, except that its mathematical 
symbol is X instead of R.  

 
AC current in a simple inductive circuit is equal to the voltage (in volts) divided by the 
inductive reactance (in ohms), just as AC or DC current in a simple resistive circuit is 
equal to the voltage (in volts) divided by the resistance (in ohms).  
 

 
 

 
 
However, we need to keep in mind that voltage and current are not in phase here. As was 
shown earlier, the voltage has a phase shift of +90o with respect to the current. If we 
represent these phase angles of voltage and current mathematically in the form of complex 
numbers, we find that an inductor's opposition to current has a phase angle, too:  
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Mathematically, we say that the phase angle of an inductor's opposition to current is 90o, 
meaning that an inductor's opposition to current is a positive imaginary quantity. This 
phase angle of reactive opposition to current becomes critically important in circuit 
analysis, especially for complex AC circuits where reactance and resistance interact. It will 
prove beneficial to represent any component's opposition to current in terms of complex 
numbers rather than scalar quantities of resistance and reactance.  

 
Section Review: 
• Inductive reactance is the opposition that an inductor offers to alternating current due 

to its phase-shifted storage and release of energy in its magnetic field. Reactance is 
symbolised by the capital letter "X" and is measured in ohms just like resistance. 

• Inductive reactance can be calculated using this formula:  
• Inductive reactance increases with increasing frequency.  
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3.3 Series Resistor-Inductor Circuits 
 
In the previous section, we explored what would happen in simple resistor-only and 
inductor-only AC circuits. Now we will mix the two components together in series form 
and investigate the effects.   
 
Take this circuit as an example to work with:  
 

 
 
The resistor will offer 5 ohm of resistance to AC current regardless of frequency, while the 
inductor will offer 3.7699 ohm of reactance to AC current at 60 Hz (check this through 
your own calculation). Because the resistor's resistance is a real number and the inductor's 
reactance is an imaginary number the combined effect of the two components will be an 
opposition to current equal to the complex sum of the two numbers. This combined 
opposition will be a phasor combination of resistance and reactance. In order to express 
this opposition succinctly, we need a more comprehensive term for opposition to current 
than either resistance or reactance alone. This term is called impedance, its symbol is Z, 
and it is also expressed in the unit of ohms, just like resistance and reactance. In the above 
example, the total circuit impedance is:  
 

 
 
Impedance is related to voltage and current just as you might expect, in a manner similar to 
resistance in Ohm's Law:  
 

 
 
In fact, this is a far more comprehensive form of Ohm's Law than what was taught in unit 
FE-1, just as impedance is a far more comprehensive expression of opposition to the flow 
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of electrons than resistance is. Any resistance and any reactance, separately or in 
combination (series/parallel), can be and should be represented as a single impedance in an 
AC circuit.  
 
To calculate current in the above circuit, we first need to give a phase angle reference for 
the voltage source, which is generally assumed to be zero. (The phase angles of resistive 
and inductive impedance are always 0o and +90o, respectively, regardless of the given 
phase angles for voltage or current).  
 

 
 
As with the purely inductive circuit, the current wave lags behind the voltage wave (of the 
source), although this time the lag is not as great: only 37.016o as opposed to a full 90o as 
was the case in the purely inductive circuit.  
 

 
 
For the resistor and the inductor, the phase relationships between voltage and current 
haven't changed. The voltage across the resistor is in phase (0o shift) with the current 
through it; and the voltage across the inductor is +90o out of phase with the current going 
through it. We can verify this mathematically:  
 

 
 
The voltage across the resistor has the exact same phase angle as the current through it, 
telling us that E and I are in phase (for the resistor only).  
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The voltage across the inductor has a phase angle of 52.984o, while the current through the 
inductor has a phase angle of -37.016o, a difference of exactly 90o between the two. This 
tells us that E and I are still 90o out of phase (for the inductor only).  
 
We can also mathematically prove that these complex values add together to make the total 
voltage, just as Kirchhoff's Voltage Law would predict.  
 
Exercise 
 
Add phasorially the voltage across the resistor to that across the inductor to show that it is 
equal to the supply voltage. 
 
Section Review: 
• Impedance is the total measure of opposition to electric current and is the complex 

sum of ("real") resistance and ("imaginary") reactance. It is symbolized by the letter 
"Z" and measured in ohms, just like resistance (R) and reactance (X).  

• Impedances (Z) are managed just like resistances (R) in series circuit analysis: series 
impedances add to form the total impedance ZTotal = Z1 + Z2 + . . . Zn  

• A purely resistive impedance will always have a phase angle of exactly 0o  
• A purely inductive impedance will always have a phase angle of exactly +90o  
• Ohm's Law for AC circuits: E = IZ ; I = E/Z ; Z = E/I  
• When resistors and inductors are mixed together in circuits, the total impedance will 

have a phase angle somewhere between 0o and +90o. The circuit current will have a 
phase angle somewhere between 0o and -90o.  

• Series AC circuits exhibit the same fundamental properties as series DC circuits: 
current is the same throughout the circuit, voltage drops add to form the total voltage, 
and impedances add to form the total impedance.  
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3.4 Parallel Resistor-Inductor Circuits 
 
Let's take the same components for our series example circuit and connect them in parallel:  
 

 
 
Because the power source has the same frequency as the series example circuit, and the 
resistor and inductor both have the same values of resistance and inductance, respectively, 
they must also have the same values of impedance. Here the complex currents through the 
resistive and inductive branches can be calculated separately and added to arrive at the 
current provided by the AC source. Alternatively the overall impedance seen by the source 
can be calculated using a reciprocal formula identical to that used in calculating parallel 
resistances.  
 

 
 
The supply current is then the source voltage divided by the overall impedance. 
 
Exercise 
 
Using the two methods outlined above, calculate the source current. Both methods should 
provide the same answer (I=2-j2.6526) 
 
Section Review: 
• Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: Just 

be sure to perform all calculations in complex form!  
• When resistors and inductors are mixed together in parallel circuits (just as in series 

circuits), the total impedance will have a phase angle somewhere between 0o and +90o. 
The circuit current will have a phase angle somewhere between 0o and -90o.  

• Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits: 
voltage is uniform throughout the circuit, branch currents add to form the total current, 
and impedances diminish (through the reciprocal formula) to form the total 
impedance.  

 
34



 
Foundation Electrical Engineering: Basic AC Theory Kuphaldt 

3.5 More on Inductors 
 
[This material relates predominantly to module ELP032] 
 
In an ideal case, an inductor acts as a purely reactive device. However, inductors are not 
quite so pure in their reactive behaviour. To begin with, they're made of wire, and we know 
that all wire possesses some measurable amount of resistance (unless it's superconducting 
wire). This built-in resistance acts as though it were connected in series with the perfect 
inductance of the coil. Consequently, the impedance of any real inductor will always be a 
complex combination of resistance and inductive reactance.  
 
Compounding this problem is something called the skin effect, which is AC's tendency to 
flow through the outer areas of a conductor's cross-section rather than through the middle. 
When electrons flow in a single direction (DC), they use the entire cross-sectional area of 
the conductor to move. Electrons switching directions of flow, on the other hand, tend to 
avoid travel through the very middle of a conductor, limiting the effective cross-sectional 
area available. The skin effect becomes more pronounced at higher frequencies but even at 
power frequencies it increases the effective resistance and the ‘copper’ losses of 
conductors.  
  
Added to the resistive losses of wire, there are other effects at work in iron-core inductors, 
which manifest themselves as additional circuit resistance. When an inductor is energised 
with AC, the alternating magnetic fields produced tend to induce circulating currents 
within the iron core known as eddy currents. Eddy current losses are primarily 
counteracted by dividing the iron core up into many thin sheets (laminations), each one 
separated from the other by a thin layer of electrically insulating varnish. With the cross-
section of the core divided up into many electrically isolated sections, current has limited 
circulation within that cross-sectional area and losses are substantially reduced. All AC 
electrical machines that rely on magnetics (generators motors and transformers) have 
laminated cores.  
 
Additionally, any magnetic hysteresis of the core that needs to be overcome with every 
reversal of the inductor's magnetic field constitutes an expenditure of energy that manifests 
itself as resistance in the circuit. Counteracting this effect is best done by means of proper 
core material selection and limits on the peak magnetic field intensity generated with each 
cycle.  
Altogether, the stray resistive properties of a real inductor (wire resistance, eddy currents, 
and hysteresis losses) are expressed under the single term of "effective resistance:"  
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3.6 AC Capacitor Circuits 
 
Whereas resistors allow a flow of electrons through them directly proportional to the 
voltage drop, capacitors oppose changes in voltage by drawing or supplying current as 
they charge or discharge to the new voltage level. The flow of electrons "through" a 
capacitor is directly proportional to the rate of change of voltage across the capacitor. This 
opposition to voltage change is another form of reactance, but one that is a mirror image of 
the kind exhibited by inductors.  
 
Expressed mathematically, the relationship between the current "through" the capacitor 
and rate of voltage change across the capacitor is:  
 

 
 
The capacitance (C) is in Farads, and the instantaneous current (i), is in amps. To show 
what happens with alternating current, let's analyse a simple capacitor circuit:  
 

 
 
If we were to plot the current and voltage for this very simple circuit, it would look 
something like this:  
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Remember, the current through a capacitor is a reaction against the change in voltage 
across it. Therefore, the instantaneous current is zero whenever the instantaneous voltage is 
at a peak (zero change, or level slope, on the voltage sine wave), and the instantaneous 
current is at a peak wherever the instantaneous voltage is at maximum change (the points 
of steepest slope on the voltage wave, where it crosses the zero line). This results in a 
voltage wave that is -90o out of phase with the current wave. Looking at the graph, the 
current has a "head start" on the voltage wave i.e. the current "leads" the voltage, and the 
voltage "lags” the current.  
 

 
 
As you might have guessed, the same unusual power wave that we saw with the simple 
inductor circuit is present in the simple capacitor circuit, too:  
 

 
 
As with the simple inductor circuit, the 90 degree phase shift between voltage and current 
results in a power wave that alternates equally between positive and negative. This means 
that a capacitor does not dissipate power as it reacts against changes in voltage; it merely 
absorbs and releases power, alternately.  
 
A capacitor's opposition to change in voltage translates to an opposition to alternating 
voltage in general, which is by definition always changing in instantaneous magnitude and 
direction. For any given magnitude of AC voltage at a given frequency, a capacitor of 
given size will allow the flow of a certain magnitude of AC current given by the following: 
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Just as the current through a resistor is a function of the voltage across the resistor and the 
resistance offered by the resistor, the AC current through a capacitor is a function of the 
AC voltage across it, and the reactance Xc offered by the capacitor.  
Since capacitors "conduct" current in proportion to the rate of voltage change, they will 
pass more current for voltages of higher frequency. 
 

 
AC current in a simple capacitive circuit is equal to the voltage (in volts) divided by the 
capacitive reactance (in ohms).  
 

 
 

 
 
However, we need to keep in mind that voltage and current are not in phase here. As was 
shown earlier, the current has a phase shift of +90° with respect to the voltage. If we 
represent these phase angles of voltage and current mathematically, we can calculate the 
phase angle of the inductor's reactive opposition to current.  
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Mathematically, we say that the phase angle of a capacitor's opposition to current is -90o, 
meaning that a capacitor's opposition to current is a negative imaginary quantity. This 
phase angle of reactive opposition to current becomes critically important in circuit 
analysis, especially for complex AC circuits where reactance and resistance interact.  

 
Section Review: 
• Capacitive reactance is the opposition that a capacitor offers to alternating current due 

to its phase-shifted storage and release of energy in its electric field.  
• Capacitive reactance can be calculated using this formula:  

             
• Capacitive reactance decreases with increasing frequency.  
 

3.7 Series Resistor-Capacitor Circuits 
 
Take this circuit as an example to analyse:  
 

 
 
The resistor will offer 5 ohm of resistance to AC current regardless of frequency, while the 
capacitor will offer 26.5258 ohms of reactance to AC current at 60 Hz (check this through 
your own calculation). Because the resistor's resistance is a real number and the capacitor's 
reactance is an imaginary number the combined effect of the two components will be an 
opposition to current equal to the complex sum of the two numbers. The term for this 
complex opposition to current (as in the series RL circuit) is the impedance Z. In the above 
example, the total circuit impedance is:  
 

 
 
  
 
To calculate current in the above circuit, we first need to give a phase angle reference for 
the voltage source, which is generally assumed to be zero. (The phase angles of resistive 
and capacitive impedance are always 0o and -90o, respectively, regardless of the given 
phase angles for voltage or current).  
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As with the purely capacitive circuit, the current wave is leading the voltage wave (of the 
source), although this time the difference is 79.325o instead of a full 90o.  
 

 
 
 
Section Review: 
• A purely capacitive impedance will always have a phase angle of exactly -90o  
• When resistors and capacitors are mixed together in circuits, the total impedance will 

have a phase angle somewhere between 0o and -90o.  
 

3.8 Parallel Resistor-Capacitor Circuits 
 
Using the same value components in our series example circuit, we will connect them in 
parallel and see what happens:  
 

 
 
 
This being a parallel circuit now, we know that voltage is shared equally by all 
components,  
Now we can apply Ohm's Law (I=E/Z) calculating current through the resistor and current 
through the capacitor:  
Just as with DC circuits, branch currents in a parallel AC circuit add up (phasorially) to 
form the total current (Kirchhoff's Current Law again):  
As we saw in the section dealing with parallel RL circuit, parallel impedance can also be 
calculated by using a reciprocal formula identical to that used in calculating parallel 
resistances. It is noteworthy to mention that this parallel impedance rule holds true 
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regardless of the kind of impedances placed in parallel. In other words, it doesn't matter if 
we're calculating a circuit composed of parallel resistors, parallel inductors, parallel 
capacitors, or some combination thereof: in the form of impedances (Z), all the terms are 
common and can be applied uniformly to the same formula.  
 
The only drawback to using this equation is the significant amount of work required to 
work it out, especially without the assistance of a calculator capable of manipulating 
complex quantities. Regardless of how we calculate total impedance for our parallel circuit 
(either Ohm's Law or the reciprocal formula), we will arrive at the same figure:  
 
 
Exercise 
 
Using the two methods outlined above, calculate the source current. Both methods should 
provide the same answer (I=2+j0.377 A) 
 
Section Review: 
• Impedances (Z) are managed just like resistances (R) in parallel circuit analysis:  
• When resistors and capacitors are mixed together in parallel circuits (just as in series 

circuits), the total impedance will have a phase angle somewhere between 0o and -90o. 
The circuit current will have a phase angle somewhere between 0o and +90o.  

• Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits: 
voltage is uniform throughout the circuit, branch currents add phasorially to form the 
total current, and impedances diminish (through the reciprocal formula) to form the 
total impedance.  

 
3.9 More on Capacitors 

 
As with inductors, the ideal capacitor is a purely reactive device, containing absolutely 
zero resistive (power dissipative) effects. In the real world, of course, nothing is so perfect. 
However, capacitors have the virtue of generally being purer reactive components than 
inductors. It is a lot easier to design and construct a capacitor with low internal series 
resistance than it is to do the same with an inductor. The practical result of this is that real 
capacitors typically have impedance phase angles more closely approaching 90o than 
inductors. Consequently, they will tend to dissipate less power than an equivalent inductor.  
 
Capacitors also tend to be smaller and lighter weight than their equivalent inductor 
counterparts, and since their electric fields are almost totally contained between their plates 
(unlike inductors, whose magnetic fields naturally tend to extend beyond the dimensions of 
the core), they are less prone to transmitting or receiving electromagnetic "noise" to/from 
other components. For these reasons, circuit designers tend to favour capacitors over 
inductors wherever a design permits either alternative.  
 
Capacitors with significant resistive effects are said to be lossy, in reference to their 
tendency to dissipate ("lose") power like a resistor. The source of capacitor loss is usually 
the dielectric material rather than any wire resistance, as wire length in a capacitor is very 
minimal.  
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Dielectric materials tend to react to changing electric fields by producing heat. This 
heating effect represents a loss in power, and is equivalent to resistance in the circuit. The 
effect is  
more pronounced at higher frequencies. 
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4. Resonance and Other Topics 
 

4.1 Resonance 
 
[This material relates predominantly to modules ELP032, ELP041] 
 
Capacitors store energy in the form of an electric field, and electrically manifest that stored 
energy as a potential: static voltage. Inductors store energy in the form of a magnetic field, 
and electrically manifest that stored energy as a kinetic motion of electrons: current. 
Capacitors and inductors are flip-sides of the same reactive coin, storing and releasing 
energy in complementary modes. When these two types of reactive components are 
directly connected together, their complementary tendencies to store energy will produce 
resonance. 
 
If either the capacitor or inductor starts out in a charged state, the two components will 
exchange energy between them, back and forth, creating their own AC voltage and current 
cycles. The frequency of resonance is such that the inductive reactance is equal to the 
capacitive reactance, i.e.: 
 

 
   = 

 

                                                          
 
 This oscillation will continue (undiminished in the theoretical case of no resistance) with 
steadily decreasing amplitude due to power losses from stray resistances in the circuit, 
until the process stops altogether. Overall, this behaviour is akin to that of a pendulum: as 
the pendulum mass swings back and forth, there is a transformation of energy taking place 
from kinetic (motion) to potential (height), in a similar fashion to the way energy is 
transferred in the capacitor/inductor circuit back and forth in the alternating forms of 
current (kinetic motion of electrons) and voltage (potential electric energy).  
 
This tendency to oscillate, or resonate, at a particular frequency is not limited to circuits 
exclusively designed for that purpose. In fact, nearly any AC circuit with a combination of 
capacitance and inductance (commonly called an "LC circuit") will tend to resonate under 
certain conditions. Such resonances may develop voltages across the reactive elements, 
which are much higher than the source voltage that initiated the resonance in the first 
place. These effects are of importance in power systems where unwanted resonances may 
cause maloperation or damage to equipment. 
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Section Review: 
• A capacitor and inductor in a circuit if excited may resonate at one particular 

frequency. At that frequency, energy is alternately shuffled between the capacitor and 
the inductor. 

• Resonance may result in serious overvoltages that are damaging to equipment in 
power system networks.  

 
4.2 Non-sinusoidal Waveforms 

 
[This material relates predominantly to module ELP032] 
 
In our study of AC circuits thus far, we've been looking at circuits powered by a single-
frequency sine voltage waveform. In many applications of power electronics used in 
interfacing renewable energy converters into power networks, this is not the case. Quite 
often we may encounter circuits where multiple frequencies of voltage coexist 
simultaneously. Also, circuit waveforms may be something other than sine-wave shaped, 
in which case we call them non-sinusoidal waveforms.  
 
It has been found that any repeating, non-sinusoidal waveform can be equated to a 
combination of DC voltage, sine waves, and/or cosine waves at various amplitudes and 
frequencies. This is true no matter how strange or convoluted the waveform in question 
may be. So long as it repeats itself regularly over time, it is reducible to this series of 
sinusoidal waves. In particular, it has been found that square waves are mathematically 
equivalent to the sum of a sine wave at that same frequency, plus an infinite series of odd-
multiple frequency sine waves at diminishing amplitude:  
 

 
 
The fact that repeating, non-sinusoidal waves are equivalent to a definite series of additive 
DC voltage, sine waves, and/or cosine waves is a consequence of how waves work: a 
fundamental property of all wave-related phenomenon, electrical or otherwise. The 
mathematical process of reducing a non-sinusoidal wave into these constituent frequencies 
is called Fourier analysis, the details of which are well beyond the scope of this text. 
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However, computer algorithms have been created to perform this analysis at high speeds 
on real waveforms, and its application in AC power quality and signal analysis is 
widespread.  
 
This same technique of "Fourier Transformation" is often used in computerised power 
instrumentation, sampling the AC waveform(s) and determining the harmonic content 
thereof. A common computer algorithm (sequence of program steps to perform a task) for 
this is the Fast Fourier Transform or FFT function. You need not be concerned with 
exactly how these computer routines work, but be aware of their existence and application.  
 

4.3 Non-linear Circuit Components 
 
[This material relates predominantly to module ELP032] 
 
Electronic power control devices such as transistors and thyristors often produce voltage 
and current waveforms that are essentially chopped-up versions of the otherwise "clean" 
(pure) sine-wave AC from the power supply. These devices have the ability to suddenly 
change their resistance with the application of a control signal voltage or current, thus 
"turning on" or "turning off" almost instantaneously, producing current waveforms bearing 
little resemblance to the source voltage waveform powering the circuit. These current 
waveforms then produce changes in the voltage waveform to other circuit components, due 
to voltage drops created by the non-sinusoidal current through circuit impedances.  
 
Circuit components that distort the normal sine-wave shape of AC voltage or current are 
called non-linear. Non-linear components such as thyristors or power transistors find 
popular use in power electronics due to their ability to regulate large amounts of electrical 
power without dissipating much heat. While this is an advantage from the perspective of 
energy efficiency, the waveshape distortions they introduce can cause problems.  
 
These non-sinusoidal waveforms, regardless of their actual shape, are equivalent to a series 
of sinusoidal waveforms of higher (harmonic) frequencies. It is becoming increasingly 
common in the electric power industry to observe overheating of transformers and motors 
due to distortions in the sine-wave shape of the AC power line voltage stemming from 
"switching" loads such as computers and high-efficiency lights and power electronic 
converters. This is no theoretical exercise: it is very real and potentially very troublesome.  
 
One very common way harmonics are generated in an AC power system is when AC is 
converted, or "rectified" into DC. This is generally done with components called diodes, 
which only allow passage current in one direction. The simplest type of AC/DC 
rectification is half-wave, where a single diode blocks half of the AC current (over time) 
from passing through the load.  
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By cutting out half of the AC wave, we've introduced the equivalent of several higher-
frequency sinusoidal (actually, cosine) waveforms into our circuit from the original, pure 
sine-wave.  
                                                       
Another method of AC/DC conversion is called full-wave, which as you may have guessed 
utilises the full cycle of AC power from the source, reversing the polarity of half the AC 
cycle to get electrons to flow through the load the same direction all the time.  
 

 
What may begin as a neat, simple AC sine-wave may end up as a complex mess of 
harmonics after passing through just a few electronic components. While the complex 
mathematics behind all this Fourier transformation is not necessary for the student to 
understand, it is of importance to realise the principles at work and to grasp the practical 
effects that harmonic signals may have on circuits. The practical effects of harmonic 
frequencies in circuits will be explored in the last section of this chapter, but before we do 
that we'll take a closer look at waveforms and their respective harmonics.  
 
Section Review: 
• Any waveform at all, so long as it is repetitive, can be reduced to a series of sinusoidal 

waveforms added together. Different waveshapes consist of different blends of sine-
wave harmonics.  

• Rectification of AC to DC is a very common source of harmonics within industrial 
power systems.  
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4.4 More on Spectrum Analysis 
 
[This material relates predominantly to module ELP032] 
 
The distinction between a waveform having even harmonics versus no even harmonics 
resides in the difference between a triangle waveshape and a sawtooth waveshape. That 
difference is symmetry above and below the horizontal centreline of the wave. A waveform 
that is symmetrical above and below its centreline (the shape on both sides mirror each 
other precisely) will contain no even-numbered harmonics.  
 

 
 
Square waves, triangle waves, and pure sine waves all exhibit this symmetry, and all are 
devoid of even harmonics.  The following waveforms contain even harmonics: 
 

 
 
Why is this harmonic rule-of-thumb an important rule to know? It can help us comprehend 
the relationship between harmonics in AC circuits and specific circuit components. Since 
most sources of sine-wave distortion in AC power circuits tend to be symmetrical, even-
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numbered harmonics are rarely seen in those applications. This is good to know if you're a 
power system designer and are planning ahead for harmonic reduction: you only have to 
concern yourself with mitigating the odd harmonic frequencies, even harmonics being 
practically non-existent in these cases.  
 
Now that we have this rule to guide our interpretation of nonsinusoidal waveforms we can 
conclude that a waveform like that produced by a rectifier circuit contains strong even 
harmonics, there being no symmetry at all above and below centre.  

 
Section Review: 
• Waveforms that are symmetrical above and below their horizontal centrelines contain 

no even-numbered harmonics.  
 

4.5 Circuit Effects 
 
The principle of non-sinusoidal, repeating waveforms being equivalent to a series of sine 
waves at different frequencies is a fundamental property of waves in general and it has 
great practical import in the study of AC circuits. It means that any time we have a non-
sinousoidal waveform; the circuit in question will react as though it's having an array of 
different frequency voltages imposed on it at once.  
 
When an AC circuit is subjected to a source voltage consisting of a mixture of frequencies, 
the components in that circuit respond to each constituent frequency in a different way. 
Any reactive component such as a capacitor or an inductor will simultaneously present a 
unique amount of impedance to each and every frequency present in a circuit. Thankfully, 
the analysis of such (linear) circuits is made relatively easy by applying the Superposition 
Theorem, regarding the multiple-frequency source as a set of single-frequency voltage 
sources applied separately and in succession, and analysing the circuit for one source at a 
time, summing the results at the end to determine the aggregate total:  
  
We can also apply the superposition theorem to the analysis of a circuit powered by a non-
sinusoidal voltage, such as a square wave. If we know the Fourier series (multiple 
sine/cosine wave equivalent) of that wave, we can regard it as originating from a series-
connected string of multiple sinusoidal voltage sources at the appropriate amplitudes, 
frequencies, and phase shifts. Needless to say, this can be a laborious task for some 
waveforms (an accurate square-wave Fourier Series is considered to be expressed out to 
the ninth harmonic, or five sine waves in all!), but it is possible. A real-life circuit will 
respond just the same to being powered by a square wave as being powered by an infinite 
series of sine waves of odd-multiple frequencies and diminishing amplitudes. This has 
been known to translate into unexpected circuit resonances, transformer and inductor core 
overheating due to eddy currents, electromagnetic noise over broad ranges of the frequency 
spectrum, and the like. Power engineers need to be made aware of the potential effects of 
non-sinusoidal waveforms in reactive circuits. These problems will be discussed in the 
module ELP032. 
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Section Review: 
• Any regular (repeating), non-sinusoidal waveform is equivalent to a particular series 

of sine/cosine waves of different frequencies, phases, and amplitudes, plus possibly a 
DC offset voltage. The mathematical process for determining the sinusoidal waveform 
equivalent for any waveform is called Fourier analysis.  

• Multiple-frequency voltage sources can be simulated for analysis by connecting 
several single-frequency voltage sources in series. Analysis of voltages and currents is 
accomplished by using the superposition theorem. NOTE: superimposed voltages and 
currents of different frequencies cannot be added together in complex number form, 
since complex numbers only account for amplitude and phase shift, not frequency!  

• Harmonics can cause problems in power systems. 
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