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1. What are "series" and "parallel"? 
 
Circuits consisting of just one battery and one load resistance are very simple to analyse, 
but they are not often found in practical applications. Usually, we find circuits where 
more than two components are connected together.  
There are two basic ways in which to connect more than two circuit components: series 
and parallel. First, an example of a series circuit:  
 

 
 
Here, we have three resistors (labelled R1, R2, and R3), connected in a long chain from 
one terminal of the battery to the other. (It should be noted that the subscript labelling -- 
those little numbers to the lower-right of the letter "R" -- are unrelated to the resistor 
values in ohms. They serve only to identify one resistor from another.) The defining 
characteristic of a series circuit is that there is only one path for current to flow, in this 
case in a clockwise direction.  
Now, let's look at the other type of circuit, a parallel configuration: 
  

 
 
Again, we have three resistors, but this time they form more than one continuous path for 
current to flow. Each individual path (through R1, R2, and R3) is called a branch.  
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The defining characteristic of a parallel circuit is that all components are connected 
between the same set of electrically common points. Looking at the schematic diagram, 
we see that points 1, 2, 3, and 4 are all electrically common. So are points 8, 7, 6, and 5. 
Note that all resistors as well as the battery are connected between these two sets of 
points.  
And, of course, the complexity doesn't stop at simple series and parallel either! We can 
have circuits that are a combination of series and parallel, too:  
 
Section Review:  
• In a series circuit, all components are connected end-to-end, forming a single path for 

electrons to flow.  
• In a parallel circuit, all components are connected across each other, forming exactly 

two sets of electrically common points.  
• A "branch" in a parallel circuit is a path for electric current formed by one of the load 

components (such as a resistor).  
 
 

2. Simple series circuits 
 
Let's start with a series circuit consisting of three resistors and a single battery:  
 

 
 
The first principle to understand about series circuits is that the amount of current is the 
same through any component in the circuit. This is because there is only one path for 
electrons to flow in a series circuit, and because free electrons flow through conductors 
like marbles in a tube, the rate of flow (marble speed) at any point in the circuit (tube) at 
any specific point in time must be equal.  
From the way that the 9 volt battery is arranged, we can tell that the current in this circuit 
will flow in a clockwise direction, from point 1 to 2, 2 to 3, 3 to 4 and 4 to 1. However, 
we have one source of voltage and three resistances. How do we use Ohm's Law here?  
 
An important caveat to Ohm's Law is that all quantities (voltage, current, resistance, and 
power) must relate to each other in terms of the same two points in a circuit. For instance, 
with a single-battery, single-resistor circuit, we could easily calculate any quantity 
because they all applied to the same two points in the circuit:  
 

 3



CREST MSc Flexible & Distance Learning Series                       Unit name here  © CREST 2002 

 
 

 
 
Since points 1 and 2 are connected together with wire of negligible resistance, as are 
points 3 and 4, we can say that point 1 is electrically common to point 2, and that point 3 
is electrically common to point 4. Since we know we have 9 volts of electromotive force 
between points 1 and 4 (directly across the battery), and since point 2 is common to point 
1 and point 3 common to point 4, we must also have 9 volts between points 2 and 3 
(directly across the resistor). Therefore, we can apply Ohm's Law (I = E/R) to the current 
through the resistor, because we know the voltage (E) across the resistor and the 
resistance (R) of that resistor. All terms (E, I, R) apply to the same two points in the 
circuit, to that same resistor, so we can use the Ohm's Law formula with no reservation.  
However, in circuits containing more than one resistor, we must be careful in how we 
apply Ohm's Law. In the three-resistor example circuit below, we know that we have 9 
volts between points 1 and 4, which is the amount of electromotive force trying to push 
electrons through the series combination of R1, R2, and R3. However, we cannot take the 
value of 9 volts and divide it by 3k, 10k or 5k Ω to try to find a current value, because we 
don't know how much voltage is across any one of those resistors, individually.  
 

 
 
The figure of 9 volts is a total quantity for the whole circuit, whereas the figures of 3k, 
10k, and 5k Ω are individual quantities for individual resistors. If we were to plug a 
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figure for total voltage into an Ohm's Law equation with a figure for individual 
resistance, the result would not relate accurately to any quantity in the real circuit.  
For R1, Ohm's Law will relate the amount of voltage across R1 with the current through 
R1, given R1's resistance, 3kΩ:  
 

 
 
But, since we don't know the voltage across R1 (only the total voltage supplied by the 
battery across the three-resistor series combination) and we don't know the current 
through R1, we can't do any calculations with either formula. The same goes for R2 and 
R3: we can apply the Ohm's Law equations if and only if all terms are representative of 
their respective quantities between the same two points in the circuit.  
So what can we do? We know the voltage of the source (9 volts) applied across the series 
combination of R1, R2, and R3, and we know the resistances of each resistor, but since 
those quantities aren't in the same context, we can't use Ohm's Law to determine the 
circuit current. If only we knew what the total resistance was for the circuit: then we 
could calculate total current with our figure for total voltage (I=E/R).  
This brings us to the second principle of series circuits: the total resistance of any series 
circuit is equal to the sum of the individual resistances. This should make intuitive sense: 
the more resistors in series that the electrons must flow through, the more difficult it will 
be for those electrons to flow. In the example problem, we had a 3 kΩ, 10 kΩ, and 5kΩ 
resistor in series, giving us a total resistance of 18 kΩ:  
 

 
 
In essence, we've calculated the equivalent resistance of R1, R2, and R3 combined. 
Knowing this, we could re-draw the circuit with a single equivalent resistor representing 
the series combination of R1, R2, and R3:  
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Now we have all the necessary information to calculate circuit current, because we have 
the voltage between points 1 and 4 (9 volts) and the resistance between points 1 and 4 (18 
kΩ):  
 

 
 
Knowing that current is equal through all components of a series circuit (and we just 
determined the current through the battery), we can go back to our original circuit 
schematic and note the current through each component:  
 

 
 
Now that we know the amount of current through each resistor, we can use Ohm's Law to 
determine the voltage drop across each one (applying Ohm's Law in its proper context):  
 

 
 
Notice the voltage drops across each resistor, and how the sum of the voltage drops (1.5 + 
5 + 2.5) is equal to the battery (supply) voltage: 9 volts. This is the third principle of 
series circuits: that the supply voltage is equal to the sum of the individual voltage drops.  
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Section Review:  
• Components in a series circuit share the same current: 

ITotal = I1 = I2 = . . . In  
• Total resistance in a series circuit is equal to the sum of the individual resistances: 

RTotal = R1 + R2 + . . . Rn  
• Total voltage in a series circuit is equal to the sum of the individual voltage drops: 

ETotal = E1 + E2 + . . . En  
 

3. Simple parallel circuits 
 
Let's start with a parallel circuit consisting of three resistors and a single battery:  
 

 
 
The first principle to understand about parallel circuits is that the voltage is equal across 
all components in the circuit. This is because there are only two sets of electrically 
common points in a parallel circuit, and voltage measured between sets of common 
points must always be the same at any given time. Therefore, in the above circuit, the 
voltage across R1 is equal to the voltage across R2 which is equal to the voltage across R3 
which is equal to the voltage across the battery.  
 
Here we can immediately apply Ohm's Law to each resistor to find its current because we 
know the voltage across each resistor (9 volts) and the resistance of each resistor:  
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As there is no accumulation of charge at any part of the circuit we can conclude that the 
total circuit current is equal to the sum of the individual branch currents.  
 
i.e.  It= 0.9+4.5+9= 14.4mA 
 

 
 
Finally, applying Ohm's Law we can calculate the total circuit resistance:  
 
Rt= Et/It=9/14.4=625 ohm 
 
 
Please note something very important here. The total circuit resistance is only 625 Ω: less 
than any one of the individual resistors. In the series circuit, where the total resistance 
was the sum of the individual resistances, the total was bound to be greater than any one 
of the resistors individually. Here in the parallel circuit, however, the opposite is true: we 
say that the individual resistances diminish rather than add to make the total. 
Mathematically, the relationship between total resistance and individual resistances in a 
parallel circuit looks like this:  
 

 
 
The same basic form of equation works for any number of resistors connected together in 
parallel, just add as many 1/R terms on the denominator of the fraction as needed to 
accommodate all parallel resistors in the circuit.  
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In summary, a parallel circuit is defined as one where all components are connected 
between the same set of electrically common points. Another way of saying this is that all 
components are connected across each other's terminals. From this definition, three rules 
of parallel circuits follow: all components share the same voltage; resistances diminish to 
equal a smaller, total resistance; and branch currents add to equal a larger, total current. 
Just as in the case of series circuits, all of these rules find root in the definition of a 
parallel circuit. If you understand that definition fully, then the rules are nothing more 
than footnotes to the definition.  
 
Section Review:  
• Components in a parallel circuit share the same voltage: 

ETotal = E1 = E2 = . . . En  
• Total resistance in a parallel circuit is less than any of the individual resistances: 

RTotal = 1 / (1/R1 + 1/R2 + . . . 1/Rn)  
• Total current in a parallel circuit is equal to the sum of the individual branch currents: 

ITotal = I1 + I2 + . . . In.  
 

4. Conductance 
 
When students first see the parallel resistance equation, the natural question to ask is, 
"Where did that thing come from?" It is truly an odd piece of arithmetic, and its origin 
deserves a good explanation.  
 
Resistance, by definition, is the measure of friction a component presents to the flow of 
electrons through it. Resistance is symbolised by the capital letter "R" and is measured in 
the unit of "ohm." However, we can also think of this electrical property in terms of its 
inverse: how easy it is for electrons to flow through a component, rather than how 
difficult. If resistance is the word we use to symbolise the measure of how difficult it is 
for electrons to flow, then a good word to express how easy it is for electrons to flow 
would be conductance.  
Mathematically, conductance is the reciprocal, or inverse, of resistance:  
 

 
 
The greater the resistance, the less the conductance, and visa-versa. This should make 
intuitive sense, resistance and conductance being opposite ways to denote the same 
essential electrical property. If two components' resistances are compared and it is found 
that component "A" has one-half the resistance of component "B," then we could 
alternatively express this relationship by saying that component "A" is twice as 
conductive as component "B." If component "A" has but one-third the resistance of 
component "B," then we could say it is three times more conductive than component "B," 
and so on.  
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Carrying this idea further, a symbol and unit were created to represent conductance. The 
symbol is the capital letter "G" and the unit is the mho, which is "ohm" spelled backwards 
(and you didn't think electronics engineers had any sense of humour!). Despite its 
appropriateness, the unit of the mho was replaced in later years by the unit of siemens 
(abbreviated by the capital letter "S").  
Back to our parallel circuit example, we should be able to see that multiple paths 
(branches) for current reduces total resistance for the whole circuit, as electrons are able 
to flow easier through the whole network of multiple branches than through any one of 
those branch resistances alone. In terms of resistance, additional branches result in a 
lesser total (current meets with less opposition). In terms of conductance, however, 
additional branches results in a greater total (electrons flow with greater conductance):  
Total parallel resistance is less than any one of the individual branch resistances because 
parallel resistors resist less together than they would separately:  
 

 
 
Total parallel conductance is greater than any of the individual branch conductances 
because parallel resistors conduct better together than they would separately:  
 

 
 
To be more precise, the total conductance in a parallel circuit is equal to the sum of the 
individual conductances:  
 

 
 

If we know that conductance is nothing more than the mathematical reciprocal (1/x) of 
resistance, we can translate each term of the above formula into resistance by substituting 
the reciprocal of each respective conductance:  
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Solving the above equation for total resistance (instead of the reciprocal of total 
resistance), we can invert (reciprocate) both sides of the equation:  
 

 
 
So, we arrive at our cryptic resistance formula at last! Conductance (G) is seldom used as 
a practical measurement, and so the above formula is a common one to see in the analysis 
of parallel circuits.  
 
Section Review:  
• Conductance is the opposite of resistance: the measure of how easy is it for electrons 

to flow through something.  
• Conductance is symbolised with the letter "G" and is measured in units of mhos or 

Siemens.  
• Mathematically, conductance equals the reciprocal of resistance: G = 1/R  
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