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5. The Bernoulli Equation 
 

 

 
[This material relates predominantly to modules ELP034, ELP035] 
 
 5.1 Work and Energy  
 5.2 Bernoulli’s Equation  
 5.3 An example of the use of Bernoulli’s equation  
 5.4 Pressure head, velocity head, potential head and total 
head 
 5.5 Losses due to friction  
 
5.1 Work and energy 
 
We know that if we drop a ball it accelerates downward with an acceleration 

 (neglecting the frictional resistance due to air). We can calculate the speed 
of the ball after falling a distance h by the formula  (a = g and s = h). The 
equation could be applied to a falling droplet of water as the same laws of motion apply 

g m= 9 81 2. / s
sv u a2 2 2= +

A more general approach to obtaining the parameters of motion (of both solids and fluids) 
is to apply the principle of conservation of energy. When friction is negligible...  

 

...the sum of kinetic energy and gravitational potential energy is constant. 

Kinetic energy =
1
2

2mv  

Gravitational potential energy  = m g h

(m is the mass, v is the velocity and h is the height above the datum). 

To apply this to a falling droplet we have an initial velocity of zero, and it falls through a 
height of h. 

 Initial kinetic energy  = 0

 Initial potential energy  = m g h

 Final kinetic energy =  
1
2

2mv

 Final potential energy  = 0

We know that  

 kinetic energy + potential energy = constant 

so 
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Initial kinetic energy + Initial potential energy = Final kinetic energy + Final potential 
energy 

mgh mv=
1
2

2  

so 

v g= 2 h  

 

Although this is applied to a drop of liquid, a similar method can be applied to a 
continuous jet of liquid. 

 
The Trajectory of a jet of water 

We can consider the situation as in the figure above -  a continuous jet of water coming 
from a pipe with velocity u . One particle of the liquid with mass  travels with the jet 
and falls from height to . The velocity also changes from u  to . The jet is 
travelling in air where the pressure is everywhere atmospheric so there is no force due to 
pressure acting on the fluid. The only force which is acting is that due to gravity. The sum 
of the kinetic and potential energies remains constant (as we neglect energy losses due to 
friction) so  

1

z2

m
z1 1 u2

mgz mu mgz mu1 1
2

2 2
21

2
1
2

+ = +  

As m is constant this becomes 

1
2

1
21

2
1 2

2
2u gz u gz+ = +  

This  will give a reasonably accurate result as long as the weight of the jet is large 
compared to the frictional forces. It is only applicable while the jet is whole - before it 
breaks up into droplets. 

Flow from a reservoir 

We can use a very similar application of the energy conservation concept to determine the 
velocity of flow along a pipe from a reservoir. Consider the ‘idealised reservoir’ in the 
figure below. 
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An idealised reservoir 

The level of the water in the reservoir is . Considering the energy situation - there is no 
movement of water so kinetic energy is zero but the gravitational potential energy is . 

z1

mgz1

If a pipe is attached at the bottom water flows along this pipe out of the tank to a level . 
A mass  has flowed from the top of the reservoir to the nozzle and it has gained a 

velocity . The kinetic energy is now 

z2

m

u2

1
2 2

2mu  and the potential energy mgz . 

Summarising  
2

 Initial kinetic energy  = 0

 Initial potential energy  = m g z1

 Final kinetic energy =  
1
2 2

2mu

 Final potential energy  = mgz2

We know that  

 kinetic energy + potential energy = constant 

so 

mgz mu mgz

mg z z mu

1 2
2

2

1 2 2
2

1
2
1
2

= +

+ =( )
 

so 

u g z z2 12= −( )2

)

 

We now have a expression for the velocity of the water as it flows from of a pipe nozzle at 
a height ( below the surface of the reservoir. (Neglecting friction losses in the pipe 
and the nozzle). 

z z1 2−

Now apply this to this example: A reservoir of water has the surface at 310m above the 
outlet nozzle of a pipe with diameter 15mm. What is the a) velocity, b) the discharge out of 
the nozzle and c) mass flow rate. (Neglect all friction in the nozzle and the pipe). 
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u g z

g
m s

2 12

2 310
78 0

= −

= × ×
=

( )

. /

z2

 

Volume flow rate is equal to the area of the nozzle multiplied by the velocity 
Q Au

m s

=

= × ×

=

( )
. /

.π 0 015
4

3

2

78 0
0 01378

.  

The density of water is 1000  so the mass flow rate is 3kg m/

mass flow rate density volume flow rate = ×
=
= ×
=

ρQ

kg s
1000 0 01378
1378

.
. /

 

In the above examples the resultant pressure force was always zero as the pressure 
surrounding the fluid was the everywhere the same - atmospheric. If the pressures had been 
different there would have been an extra force acting and we would have to take into 
account the work done by this force when calculating the final velocity. 

We have already seen in the hydrostatics section an example of pressure difference where 
the velocities are zero. 

p1

z2

z1

p2

 
The pipe is filled with stationary fluid of density ρ  has pressures  and  at levels  
and  respectively. What is the pressure difference in terms of these levels? 

p1 p2 z1

z2

p p g z z2 1 1 2− = −ρ ( )  

or 

p
gz

p
gz1

1
2

2ρ ρ+ = +  

This applies when the pressure varies but the fluid is stationary. 

Compare this to the equation derived for a moving fluid but constant pressure: 
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1
2

1
21

2
1 2

2
2u gz u gz+ = +  

You can see that these are similar form. What would happen if both pressure and velocity 
varies? 

 

5.2 Bernoulli’s Equation 
 

Bernoulli’s equation is one of the most important/useful equations in fluid mechanics. It 
may be written, 

 

p
g

u
g

z
p
g

u
g

z1 1
2

1
2 2

2

22 2ρ ρ
+ + = + +  

 

We see that from applying equal pressure or zero velocities we get the two equations from 
the section above. They are both just special cases of Bernoulli’s equation. 

Bernoulli’s equation has some restrictions in its applicability, they are: 

•  Flow is steady; 

•  Density is constant (which also means the fluid is incompressible); 

•  Friction losses are negligible.  

•  The equation relates the states at two points along a single streamline, (not 
conditions on two different streamlines). 

All these conditions are impossible to satisfy at any instant in time! Fortunately for many 
real situations where the conditions are approximately satisfied, the equation gives very 
good results. 

The derivation of Bernoulli’s Equation: 

A

B
B’

A’
mg

z

Cross sectional area  a

 
An element of fluid, as that in the figure above, has potential energy due to its height z 
above a datum and kinetic energy due to its velocity u. If the element has weight mg then 

 potential energy =  mgz

 potential energy per unit weight =  z
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 kinetic energy = 
1
2

2mu  

 kinetic energy per unit weight = 
u

g

2

2
 

At any cross-section the pressure generates a force, the fluid will flow, moving the cross-
section, so work will be done. If the pressure at cross section AB is p and the area of the 
cross-section is  a  then 

 force on AB = pa  

when the mass mg of fluid has passed AB, cross-section AB will have moved to A’B’ 

 volume passing AB = 
mg

g
m

ρ ρ=  

therefore 

 distance AA’ = 
m
aρ  

 work done = force × distance AA’ 

        = pa
m
a

pm
× =ρ ρ  

 work done per unit weight = 
p
gρ  

This term is know as the pressure energy of the flowing stream. 

Summing all of these energy terms gives 

Pressure 
energy per
unit weight

Kinetic
energy per
unit weight

Potential
energy  per
unit weight

Total
energy per
unit weight

+ + =  

or 

Hz
g

u
g
p =++

2

2

ρ
 

As all of these elements of the equation have units of length, they are often referred to as 
the following: 

 pressure head = 
g
p

ρ
 

velocity head = 
g

u
2

2

 

 potential head =  z

 total head = H  
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By the principle of conservation of energy the total energy in the system does not change, 
Thus the total head does not change. So the Bernoulli equation can be written 

p
g

u
g

z H
ρ

+ + = =
2

2
Constant  

As stated above, the Bernoulli equation applies to conditions along a streamline. We can 
apply it between two points, 1 and 2, on the streamline in the figure below 

 
Two points joined by a streamline 

total energy per unit weight at 1  =  total energy per unit weight at 2 

or 

total head at 1 = total head at 2 

or 

p
g

u
g

z
p
g

u
g

z1 1
2

1
2 2

2

22 2ρ ρ+ + = + +  

This equation assumes no energy losses (e.g. from friction) or energy gains (e.g. from a 
pump) along the streamline. It can be expanded to include these simply, by adding the 
appropriate energy terms: 

Total
energy per

unit weight at 1

Total
energy per unit

weight at 2

Loss 
per unit
weight

Work done
per unit
weight

Energy
supplied

per unit weight
= + + −  

p
g

u
g

z
p
g

u
g

z h w q1 1
2

1
2 2

2

22 2ρ ρ+ + = + + + + −  

 

5.3 An example of the use of the Bernoulli Equation 
 
When the Bernoulli equation is combined with the continuity equation the two can be used 
to find velocities and pressures at points in the flow connected by a streamline. 
 
Here is an example of using the Bernoulli equation to determine pressure and velocity at 
within a contracting and expanding pipe. 
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A contracting/expanding pipe 

A fluid of constant density ρ = 960  is flowing steadily through the above tube. The 
diameters at the sections are . The gauge pressure at 1 is 

and the velocity here is . We want to know the gauge pressure 
at section 2.  

kg m/ 3

d m1 100= an

1

m d2 80=d
u m s5= /

mm
mp kN1

2200= /

 

We shall of course use the Bernoulli equation to do this and we apply it along a streamline 
joining section 1 with section 2. 

 

The tube is horizontal, with z1 = z2 so Bernoulli gives us the following equation for 
pressure at section 2: 

p p u u2 1 1
2

2
2

2
= + −

ρ
( )  

But we do not know the value of . We can calculate this from the continuity equation: 
Discharge into the tube is equal to the discharge out i.e. 

u2

A u A u

u
A u
A

u
d
d

u

m s

1 1 2 2

2
1 1

2

2
1

2

2

1

7 8125

=

=

=








= . /

 

So we can now calculate the pressure at section 2 

p
N m

kN m

2
2

2

200000 17296 87
182703
182 7

= −

=

=

.
/

. /
 

Notice how the velocity has increased while the pressure has decreased. The phenomenon - 
that pressure decreases as velocity increases - sometimes comes in very useful in 
engineering. (It is on this principle that carburettor in many car engines work - pressure 
reduces in a contraction allowing a small amount of fuel to enter). 
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Here we have used both the Bernoulli equation and the Continuity principle together to 
solve the problem. Use of this combination is very common. We will be seeing this again 
frequently throughout the rest of the course. 

 

5.4 Pressure Head, Velocity Head, Potential Head and Total Head 
 

By looking again at the example of the reservoir with which feeds a pipe we will see how 
these different heads relate to each other. 

Consider the reservoir below feeding a pipe which changes diameter and rises (in reality it 
may have to pass over a hill) before falling to its final level. 

 
Reservoir feeding a pipe  

To analyses the flow in the pipe we apply the Bernoulli equation along a streamline from 
point 1 on the surface of the reservoir to point 2 at the outlet nozzle of the pipe. And we 
know that the total energy per unit weight or the total head does not change - it is constant 
-  along a streamline. But what is this value of this constant? We have the Bernoulli 
equation 

p
g

u
g

z H
p
g

u
g

z1 1
2

1
2 2

2

22 2ρ ρ
+ + = = + +  

We can calculate the total head, H, at the reservoir,  as this is atmospheric and 
atmospheric gauge pressure is zero, the surface is moving very slowly compared to that in 
the pipe so u , so all we are left with is  the elevation of the 
reservoir. 

p1 0=

ad H=1 0= total he z= 1

A useful method of analysing the flow is to show the pressures graphically on the same 
diagram as the pipe and reservoir. In the figure above the total head line is shown. If we 
attached piezometers at points along the pipe, what would be their levels when the pipe 
nozzle was closed? (Piezometers, as you will remember, are simply open ended vertical 
tubes filled with the same liquid whose pressure they are measuring). 
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Piezometer levels with zero velocity 

As you can see in the above figure, with zero velocity all of the levels in the piezometers 
are equal and the same as the total head line. At each point on the line, when u = 0 

p
g

z H
ρ

+ =  

The level in the piezometer is the pressure head and its value is given by 
p
gρ . 

What would happen to the levels in the piezometers (pressure heads) if the if water was 
flowing with velocity = u? We know from earlier examples that as velocity increases so 
pressure falls … 

 
Piezometer levels when fluid is flowing 

p
g

u
g

z Hρ + + =
2

2
 

We see in this figure that the levels have reduced by an amount equal to the velocity head, 

g
u
2

2

. 

Now as the pipe is of constant diameter we know that the velocity is constant along the 
pipe so the velocity head is constant and represented graphically by the horizontal line 
shown. (this line is known as the hydraulic grade line). 

What would happen if the pipe were not of constant diameter? Look at the figure below 
where the pipe from the example above is replaced be a pipe of three sections with the 
middle section of larger diameter 
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Piezometer levels and velocity heads with fluid flowing in varying diameter pipes 

 

The velocity head at each point is now different. This is because the velocity is different at 
each point. By considering continuity we know that the velocity is different because the 
diameter of the pipe is different. Which pipe has the greatest diameter? 

Pipe 2, because the velocity, and hence the velocity head, is the smallest. 

This graphical representation has the advantage that we can see at a glance the pressures in 
the system. For example, where along the whole line is the lowest pressure head? It is 
where the hydraulic grade line is nearest to the pipe elevation i.e. at the highest point of the 
pipe.  

 

5.5 Losses due to friction 
In a real pipe line there are energy losses due to friction - these must be taken into account 
as they can be very significant. How would the pressure and hydraulic grade lines change 
with friction? Going back to the constant diameter pipe, we would have a pressure 
situation like this shown below 

 
Hydraulic Grade line and Total head lines for a constant diameter pipe with friction 

How can the total head be changing? We have said that the total head - or total energy per 
unit weight - is constant. We are considering energy conservation, so if we allow for an 
amount of energy to be lost due to friction the total head will change. We have seen the 
equation for this before. But here it is again with the energy loss due to friction written as a 
head and given the symbol h . This is often know as the head loss due to friction. f
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p
g

u
g

z
p
g

u
g

z hf
1 1

2

1
2 2

2

22 2ρ ρ
+ + = + + +  
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